精英家教网 > 高中数学 > 题目详情
9.已知集合A={1,a,b},B={a,a2,ab},且A∩B=A∪B,求a1+b2+a3+b4+…+a2011+b2012+a2013+b2014的值.

分析 根据题意可得{1,a,b}={a,a2,ab},由集合相等的意义可得a=-1,b=0,代入计算即可.

解答 解:∵A∩B=A∪B,
∴A=B,
∵集合A={1,a,b},B={a,a2,ab},
∴a=-1,b=0,
∴a1+b2+a3+a4+…+a2013+b2014=(-1)+(-1)+(-1)+…+(-1)=-1007.

点评 本题考查集合相等的定义与集合元素的性质,关键是由集合相等的含义,得到a、b的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在复平面内,复数z1=$\frac{2}{1+i}$,z2=$\frac{2}{1-i}$(i为虚数单位)对应的点分别为A,B,则线段AB的长度为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列对于函数f(x)=3+cos2x,x∈(0,3π)的判断正确的是(  )
A.函数f(x)的周期为π
B.对于?a∈R,函数f(x+a)都不可能为偶函数
C.?x0∈(0,3π),使f(x0)=4
D.函数f(x)在区间$[\frac{π}{2},\frac{5π}{4}]$内单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数f(x)与f(x+1)均为奇函数,且当x∈[0,$\frac{1}{2}$]时,f(x)=$\sqrt{x}$,则f($\frac{31}{4}$)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.先化简再求值:$\frac{\sqrt{1-sin20°}}{cos10°-\sqrt{1-co{s}^{2}170°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=cos2x+2$\sqrt{3}$sinxcosx-sin2x的周期,最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={x||x-a|<2},B={x|$\frac{{x}^{2}-2x-15}{x-2}$≤0},若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量为5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为(  )
A.75B.77C.76D.78

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.正弦函数y=sinx与余弦函数y=cosx都是周期函数,它们的周期都为2π.

查看答案和解析>>

同步练习册答案