精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(x+1)-
ax
x+2
,它在原点处的切线恰为x轴.
(1)求f(x)的解析式;
(2)证明:当x>0时,f(x)>0;
(3)证明:ln2•ln3…lnn>
2
n
 
(n+1
)
2
 
(n∈N,n≥2)
分析:(1)先根据题意求出函数的导数f′(x),再利用导数的几何意义得f′(0)=0,从而求出a值,最后写出f(x)的解析式;
(2)当x≥0时,f′(x)=
x2
(x+1)(x+2)2
≥0
,利用导数与单调性的关系得f(x)在[0,+∞)上是增函数,且f(0)=0,即可证得结论;
(3)由(2)知,当x>0时,ln(1+x)>
2x
x+2
,分别令x=1,2,3,…,n.得到n个不等关系,再将以上各式相乘即得.
解答:解:(1)由题意f(x)=ln(x+1)-
ax
x+2
得,
f′(x)=
1
x+1
-
2a
(x+2)2

由于函数f(x)=ln(x+1)-
ax
x+2
在原点处的切线恰为x轴.
∴f′(0)=0,即1-
2a
4
=0,
∴a=2.
∴f(x)的解析式f(x)=ln(1+x)-
2x
x+2

(2)当x≥0时,f′(x)=
x2
(x+1)(x+2)2
≥0

∴f(x)在[0,+∞)上是增函数,且f(0)=0,
∴当x>0时,f(x)>f(0)=0,
即当x>0时,f(x)>0.
(3)由(2)知,当x>0时,ln(1+x)>
2x
x+2

∴ln2>
2
3
,ln3>
4
4
,ln4>
2×3
5
,…,lnn>
2×(n-1)
n+1
,(n≥2),
以上各式相乘,得ln2•ln3…lnn>
2n
n(n+1)
2
n
 
(n+1)
2
 
(n∈N,n≥2)

从而结论成立.
点评:本小题主要考查导数的几何意义、函数单调性的应用、不等式的证明等基础知识,考查运算求解能力、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案