精英家教网 > 高中数学 > 题目详情
若a,b,c>0,且2a+b+c=4,则t=a(a+b+c)+bc的最大值为
 
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:利用基本不等式,即可得出结论.
解答: 解:∵a,b,c都是正数,2a+b+c=4,
∴t=a(a+b+c)+bc=a2+ab+ac+bc=(a+b)(a+c)≤(
a+b+a+c
2
2=(
4
2
)2=22=4

∴a2+ab+ac+bc的最大值为4,
故答案为:4.
点评:本题考查最值问题,正确因式分解,利用基本不等式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设关于x、y的不等式组
2x-y+1>0
x+m<0
y-m>0
表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直角△ABC的斜边AB=2
2
,O为斜边AB的中点,若P为线段OC上的动点,则(
PA
+
PB
)•
CP
的最大值是(  )
A、
3
B、
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1与直线l2:3x+4y-6=0平行且与圆:x2+y2+2y=0相切,则直线l1的方程是(  )
A、3x+4y-1=0
B、3x+4y+1=0或3x+4y-9=0
C、3x+4y+9=0
D、3x+4y-1=0或3x+4y+9=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数f(x)=Asin(ωx+ϕ)+c(A>0,ω>0,0<ϕ<2π)图象的一部分.
(1)求函数f(x)的解析式,并写出f(x)的振幅、周期、初相;
(2)求使得f(x)>
5
2
的x的集合;
(3)函数f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是假命题的是(  )
A、?a>0,f(x)=lnx-a有零点
B、?m∈R,使f(x)=(m-1)•xm2-4m+3是幂函数,且在(0,+∞)上递减
C、?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数
D、若y=f(x)的图象关于某点对称,那么?a,b∈R使得y=f(x-a)+b是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(
π
3
+x)cos(
π
3
-x)+
3
sinxcosx+
1
4

(1)求函数f(x)的最小正周期,以及x∈[-
π
6
π
3
]
时f(x)的值域;
(2)若f(θ+
π
12
)=
1
3
,θ∈(
π
4
π
2
)
,求sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确的是(  )
A、命题“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B、“p∧q为真”是命题“p∨a为真”的必要不充分条件
C、“若am2<bm2,则a<b”的否命题为真
D、已知a,b∈R,则“log3a>log3b”是“(
1
2
a<(
1
2
b”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
lim
x→∞
(e-2xcosx)=
 

查看答案和解析>>

同步练习册答案