精英家教网 > 高中数学 > 题目详情
3.x满足不等式x+1<$\frac{2x}{x+1}$,则x+$\frac{4}{x}$的取值范围是(-∞,-4].

分析 解不等式可得x<-1,可得x+$\frac{4}{x}$=-(-x+$\frac{4}{-x}$)≤-2$\sqrt{-x•\frac{4}{-x}}$=-4,找出等号成立的条件即可.

解答 解:不等式x+1<$\frac{2x}{x+1}$可化为x+1-$\frac{2x}{x+1}$<0,
即$\frac{{x}^{2}+1}{x+1}$<0,解得x<-1,
∴x+$\frac{4}{x}$=-(-x+$\frac{4}{-x}$)≤-2$\sqrt{-x•\frac{4}{-x}}$=-4
当且仅当-x=$\frac{4}{-x}$即x=-2时取等号,
故答案为:(-∞,-4]

点评 本题考查基本不等式求最值,涉及不等式的解集,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3-ax-1,若f(x)在区间(-1,1)上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若log7[log3(log2x)]=0,则${x}^{\frac{1}{2}}$=(  )
A.3B.2$\sqrt{3}$C.2$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知f(x)=($\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$)x.
(1)求函数的定义域;
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=ln(x+1),则函数f(x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(0,-2),$\overrightarrow{c}$=(k,$\sqrt{3}$).
(Ⅰ)若$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{c}$共线,求实数k的值;
(Ⅱ)若$\overrightarrow{b}$=$\overrightarrow{a}$+m$\overrightarrow{c}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的值域.
(1)y=log2(x2+4);
(2)y=log${\;}_{\frac{1}{2}}$(3+2x-x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=3x+$\frac{x-2}{x+1}$在(-1,+∞)上为增函数,求方程f(x)=0的正根.(精确度为0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=2x-2-x,设a=log43,b=ln3,c=e2,则f(a),f(b),f(c)的大小关系为(  )
A.f(a)>f(b)>f(c)B.f(b)>f(a)>f(c)C.f(c)>f(a)>f(b)D.f(c)>f(b)>f(a)

查看答案和解析>>

同步练习册答案