【题目】如图,把边长为4的正沿中位线折起使点到的位置.
(1)在棱上是否存在点,使得平面?若存在,确定的位置,若不存在,说明理由;
(2)若,求四棱锥的体积.
科目:高中数学 来源: 题型:
【题目】临近开学季,某大学城附近的一款“网红”书包销售火爆,其成本是每件15元.经多数商家销售经验,这款书包在未来1个月(按30天计算)的日销售量(个)与时间(天)的关系如下表所示:
时间(/天) | 1 | 4 | 7 | 11 | 28 | … |
日销售量(/个) | 196 | 184 | 172 | 156 | 88 | … |
未来1个月内,前15天每天的价格(元/个)与时间(天)的函数关系式为(且为整数),后15天每天的价格(元/个)与时间(天)的函数关系式为(且为整数).
(1)认真分析表格中的数据,用所学过的一次函数、反比例函数的知识确定一个满足这些数据(个)与(天)的关系式;
(2)试预测未来1个月中哪一天的日销售利润最大,最大利润是多少?
(3)在实际销售的第1周(7天),商家决定每销售1件商品就捐赠元利润给该城区养老院.商家通过销售记录发现,这周中,每天扣除捐赠后的日销售利润随时间(天)的增大而增大,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:首项为且公比为正数的等比数列为“数列”.
(Ⅰ)已知等比数列()满足:,,判断数列是否为“数列”;
(Ⅱ)设为正整数,若存在“数列”( ),对任意不大于的正整数,都有成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从2月7日到2月13日一周的新增“新冠肺炎”确诊人数的折线图如下:
根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.
①_________________________________________________.
②_________________________________________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的右焦点为,点分别是椭圆的上、下顶点,点是直线上的一个动点(与轴的交点除外),直线交椭圆于另一个点.
(1)当直线经过椭圆的右焦点时,求的面积;
(2)①记直线的斜率分别为,求证:为定值;
②求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过椭圆右焦点的直线与椭圆交于,两点,当直线与轴垂直时,.
(1)求椭圆的标准方程;
(2)当直线与轴不垂直时,在轴上是否存在一点(异于点),使轴上任意点到直线,的距离均相等?若存在,求点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com