精英家教网 > 高中数学 > 题目详情

【题目】定义:首项为且公比为正数的等比数列为数列”.

(Ⅰ)已知等比数列)满足:,判断数列是否为数列

(Ⅱ)设为正整数,若存在数列 ),对任意不大于的正整数,都有成立,求的最大值.

【答案】(Ⅰ)数列数列(Ⅱ)5

【解析】

(Ⅰ)利用基本量法, 设等比数列的公比为再根据 数列”的定义辨析即可.

(Ⅱ)先证明对于时,不存在对应的,再分布求解当均存在“数列”满足条件即可.

解:(Ⅰ)设等比数列的公比为.

因为等比数列满足,所以.

解得.

又因为,所以.

.

满足首项为,公比为正数,

所以数列数列

(Ⅱ)对于时,因为对任意不大于的正整数,都,

.

,有,且,

.

所以.

,无解.

所以不存在满足题意的.

因此所求的最大值小于.

对于时,找到满足,,

解不等式组 解得

所以,存在满足题意.

即存在数列 ),满足题意,

综上的最大值等于.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,且过点.

1)求椭圆C的方程;

2)直线l交椭圆C于不同的两点AB,且中点E在直线上,线段的垂直平分线交y轴于点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水是生命之源,为了引导市民科学用水,我国加快阶梯水价推行,原则是保基本、建机制、促节约,其中保基本是指保证至少80%的居民用户用水价格不变,建机制是制定合理的阶梯用水价格某城市采用简单随机抽样的方法从郊区和城区分别抽取5户和20户居民的年人均用水量(单位:吨)进行调研,抽取数据的茎叶图如下:

1)若在郊区的这5户居民中随机抽取2户,求被抽取的2户年人均用水量的和超过60的概率;

2)若该城市郊区和城区的居民户数比为15,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,只保证这一梯次的居民用户用水价格不变,试根据样本估计总体的思想分析此方案是否符合国家保基本政策.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”《中华人民共和国道路交通安全法》第条规定:对不礼让行人的驾驶员处以扣分,罚款元的处罚.下表是某市一主干路口监控设备所抓拍的个月内驾驶员不“礼让斑马线”行为统计数据:

月份

不“礼让斑马线”驾驶员人数

1)请利用所给数据求不“礼让斑马线”驾驶员人数与月份之间的回归直线方程,并预测该路口月份的不“礼让斑马线”驾驶员人数;

2)若从表中月份和月份的不“礼让斑马线”驾驶员中,采用分层抽样方法抽取一个容量为的样本,再从这人中任选人进行交规调查,求抽到的两人恰好来自同一月份的概率.

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是半正多面体(图1.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率

(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;

(Ⅱ)求甲恰好比乙多击中目标次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,把边长为4的正沿中位线折起使点的位置.

1)在棱上是否存在点,使得平面?若存在,确定的位置,若不存在,说明理由;

2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,底面,点E的中点,点F在边上移动.

(Ⅰ)若F中点,求证:平面

(Ⅱ)求证:

(Ⅲ)若二面角的余弦值等于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子公司新开发一电子产品,该电子产品的一个系统G有3个电子元件组成,各个电子元件能否正常工作的概率均为,且每个电子元件能否正常工作相互独立.若系统C中有超过一半的电子元件正常工作,则G可以正常工作,否则就需要维修,且维修所需费用为500元.

(1)求系统不需要维修的概率;

(2)该电子产品共由3个系统G组成,设E为电子产品需要维修的系统所需的费用,求的分布列与期望;

(3)为提高G系统正常工作概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率均为,且新增元件后有超过一半的电子元件正常工作,则C可以正常工作,问:满足什么条件时,可以提高整个G系统的正常工作概率?

查看答案和解析>>

同步练习册答案