【题目】如图,在四棱锥中,底面是正方形,底面,,点E是的中点,点F在边上移动.
(Ⅰ)若F为中点,求证:平面;
(Ⅱ)求证:;
(Ⅲ)若二面角的余弦值等于,求的值.
【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ).
【解析】
(Ⅰ)证明得到答案.
(Ⅱ)证明,,得到平面,得到答案.
(Ⅲ)如图以A为原点建立空间直角坐标系,平面的一个法向量为,平面的一个法向量为,根据夹角公式计算得到答案.
(Ⅰ)在中,因为点E是中点,点F是中点,所以.
又因为平面,平面,所以平面.
(Ⅱ)证因为底面是正方形,所以.
因为底面,所以,,所以平面.
由于平面,所以.
由已知,点E是的中点,所以.
又因为,所以平面,因为平面,所以.
(Ⅲ)如图以A为原点建立空间直角坐标系,
,,,,.
于是,.
设平面的一个法向量为,
由得,取,则,,得
由于,,,所以平面.
即平面的一个法向量为.
根据题意,,解得.
由于,所以.
科目:高中数学 来源: 题型:
【题目】2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.下图表展示了2月14日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是( )
A.16天中每日新增确诊病例数量呈下降趋势且19日的降幅最大
B.16天中每日新增确诊病例的中位数小于新增疑似病例的中位数
C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000
D.19日至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:首项为且公比为正数的等比数列为“数列”.
(Ⅰ)已知等比数列()满足:,,判断数列是否为“数列”;
(Ⅱ)设为正整数,若存在“数列”( ),对任意不大于的正整数,都有成立,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的右焦点为,点分别是椭圆的上、下顶点,点是直线上的一个动点(与轴的交点除外),直线交椭圆于另一个点.
(1)当直线经过椭圆的右焦点时,求的面积;
(2)①记直线的斜率分别为,求证:为定值;
②求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,有以下三个结论:
①函数恒有两个零点,且两个零点之积为;
②函数的极值点不可能是;
③函数必有最小值.
其中正确结论的个数有( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过椭圆右焦点的直线与椭圆交于,两点,当直线与轴垂直时,.
(1)求椭圆的标准方程;
(2)当直线与轴不垂直时,在轴上是否存在一点(异于点),使轴上任意点到直线,的距离均相等?若存在,求点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知中心在坐标原点,焦点在坐标轴上的椭圆的右焦点为,且离心率,过点且斜率为的直线交椭圆于点,两点,为的中点,过作直线的垂线,直线与直线相交于点.
(1)求椭圆的标准方程;
(2)证明:点在一条定直线上;
(3)当最大时,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com