【题目】在平面直角坐标系
中,已知中心在坐标原点,焦点在坐标轴上的椭圆
的右焦点为
,且离心率
,过点
且斜率为
的直线
交椭圆
于点
,
两点,
为
的中点,过
作直线
的垂线
,直线
与直线
相交于点
.
![]()
(1)求椭圆
的标准方程;
(2)证明:点
在一条定直线上;
(3)当
最大时,求
的面积.
【答案】(1)
(2)证明见解析(3)![]()
【解析】
(1)由焦点坐标、离心率和椭圆
关系可构造方程组求得
,进而得到椭圆方程;
(2)设
,与椭圆方程联立得到韦达定理的形式,进而得到
中点
的坐标,进而得到直线
方程,与直线
方程联立后可求得
点坐标,知
点横坐标为定值
,从而得到结论;
(3)利用直线
和
的斜率可结合两角和差正切公式表示出
,利用基本不等式可求得
的最大值,由取等条件可得此时
的值和
点坐标;利用弦长公式和点到直线距离公式分别求得三角形的底和高,进而得到所求面积.
(1)
椭圆
的右焦点为
,
.
又
,
,
.
椭圆
的标准方程为:
.
(2)设
,
,
中点
,直线
:
,
联立方程组
,化简得:
,
,
,
将
代入直线
的方程,得点
的坐标为
,
,
直线
的方程为
.
直线
过椭圆的右焦点
且与直线
垂直,
直线
的方程为
.
解方程组
得:
,
点
在定直线
上.
(3)设直线
的倾斜角为
,直线
的倾斜角为
.
由(2)可知:
,
.
![]()
![]()
.
当且仅当
,即
时
取最大值,此时
最大.
此时直线
方程为
,点
为
.
由(2)可得:
,
,
,
弦长
,
到直线
的距离
,
.
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第
条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”《中华人民共和国道路交通安全法》第
条规定:对不礼让行人的驾驶员处以扣
分,罚款
元的处罚.下表是某市一主干路口监控设备所抓拍的
个月内驾驶员不“礼让斑马线”行为统计数据:
月份 |
|
|
|
|
|
不“礼让斑马线”驾驶员人数 |
|
|
|
|
|
(1)请利用所给数据求不“礼让斑马线”驾驶员人数
与月份
之间的回归直线方程
,并预测该路口
月份的不“礼让斑马线”驾驶员人数;
(2)若从表中
月份和
月份的不“礼让斑马线”驾驶员中,采用分层抽样方法抽取一个容量为
的样本,再从这
人中任选
人进行交规调查,求抽到的两人恰好来自同一月份的概率.
参考公式:
,
.
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是正方形,
底面
,
,点E是
的中点,点F在边
上移动.
![]()
(Ⅰ)若F为
中点,求证:
平面
;
(Ⅱ)求证:
;
(Ⅲ)若二面角
的余弦值等于
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别是
,
,
,
是其左右顶点,点
是椭圆
上任一点,且
的周长为6,若
面积的最大值为
.
(1)求椭圆
的方程;
(2)若过点
且斜率不为0的直线交椭圆
于
,
两个不同点,证明:直线
与
的交点在一条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子公司新开发一电子产品,该电子产品的一个系统G有3个电子元件组成,各个电子元件能否正常工作的概率均为
,且每个电子元件能否正常工作相互独立.若系统C中有超过一半的电子元件正常工作,则G可以正常工作,否则就需要维修,且维修所需费用为500元.
(1)求系统不需要维修的概率;
(2)该电子产品共由3个系统G组成,设E为电子产品需要维修的系统所需的费用,求
的分布列与期望;
(3)为提高G系统正常工作概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率均为
,且新增元件后有超过一半的电子元件正常工作,则C可以正常工作,问:
满足什么条件时,可以提高整个G系统的正常工作概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:
,且对任意
,
(s,k,l,
)都有
,则称数列
为“T”数列.
(1)证明:正项无穷等差数列
是“T”数列;
(2)记正项等比数列
的前n项之和为
,若数列
是“T”数列,求数列
公比的取值范围;
(3)若数列
是“T”数列,且数列
的前n项之和
满足
,求证:数列
是等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com