【题目】甲、乙两人各进行
次射击,甲每次击中目标的概率为
,乙每次击中目标的概率
,
(Ⅰ)记甲击中目标的次数为
,求
的概率分布及数学期望;
(Ⅱ)求甲恰好比乙多击中目标
次的概率.
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“若x=y,则sin x=sin y”的逆否命题为真命题
D.命题“x0∈R使得
”的否定是“x∈R,均有x2+x+1<0”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:首项为
且公比为正数的等比数列为“
数列”.
(Ⅰ)已知等比数列
(
)满足:
,
,判断数列
是否为“
数列”;
(Ⅱ)设
为正整数,若存在“
数列”
(
),
对任意不大于
的正整数
,都有
成立,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,直线
经过点
,直线
经过点
,直线
直线
,且直线
分别与椭圆
相交于
两点和
两点.
(Ⅰ)若
分别为椭圆
的左、右焦点,且直线
轴,求四边形
的面积;
(Ⅱ)若直线
的斜率存在且不为0,四边形
为平行四边形,求证:
;
(Ⅲ)在(Ⅱ)的条件下,判断四边形
能否为矩形,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的右焦点为
,点
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴的交点除外),直线
交椭圆于另一个点
.
![]()
(1)当直线
经过椭圆的右焦点
时,求
的面积;
(2)①记直线
的斜率分别为
,求证:
为定值;
②求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
,有以下三个结论:
①函数恒有两个零点,且两个零点之积为
;
②函数的极值点不可能是
;
③函数必有最小值.
其中正确结论的个数有( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,过坐标原点
作两条互相垂直的射线与椭圆
分别交于
,
两点.
(1)证明:当
取得最小值时,椭圆
的离心率为
.
(2)若椭圆
的焦距为2,是否存在定圆与直线
总相切?若存在,求定圆的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com