精英家教网 > 高中数学 > 题目详情
16.设命题p:f(x)=$\frac{1}{x-m}$在区间(1,+∞)上是减函数;命题q;x1,x2是方程x2-ax-2=0的两个实根,不等式m2+5m-3≥|x1-x2|对任意实数,a∈[-1,1]恒成立;若(¬p)∧q为真命题,试求实数m的取值范围.

分析 命题p:利用反比例函数的单调性可得:m≤1.命题q;利用根与系数的关系可得:|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{{a}^{2}+8}$.根据a∈[-1,1],可得$\sqrt{{a}^{2}+8}$∈$[2\sqrt{2},3]$.由不等式m2+5m-3≥|x1-x2|对任意实数,a∈[-1,1]恒成立,可得m2+5m-3≥3.由(¬p)∧q为真命题,可得p为假命题,q为真命题.

解答 解:命题p:f(x)=$\frac{1}{x-m}$在区间(1,+∞)上是减函数,∴m≤1.
命题q;x1,x2是方程x2-ax-2=0的两个实根,∴|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{{a}^{2}+8}$.
∵a∈[-1,1],∴$\sqrt{{a}^{2}+8}$∈$[2\sqrt{2},3]$.
由不等式m2+5m-3≥|x1-x2|对任意实数,a∈[-1,1]恒成立,
∴m2+5m-3≥3,即m2+5m-6≥0,解得m≥1或m≤-6.
∵(¬p)∧q为真命题,
∴p为假命题,q为真命题.
∴$\left\{\begin{array}{l}{m>1}\\{m≥1或m≤-6}\end{array}\right.$,解得m>1.
∴实数m的取值范围是(1,+∞).

点评 本题考查了函数的性质、一元二次方程的根与系数的关系、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设随机变量X服从正态分布N(2,σ2),若P(X<0)=0.1,则P(2<X<4)=0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={x|x∈Z,x≥0},B={y|y=x2},则A与B的关系是A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,∠B=$\frac{π}{3}$,∠C=$\frac{π}{4}$,BC=8,D是边BC上一点,且$\overrightarrow{BD}$=$\frac{\sqrt{3}-1}{2}$$\overrightarrow{BC}$,则AD的长为(  )
A.12-4$\sqrt{3}$B.12+4$\sqrt{3}$C.4$\sqrt{3}$-4D.4$\sqrt{3}$+4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式x2+px+q<0的解集为(1,3),则不等式$\frac{x-p}{x-q}$>0的解集为(  )
A.(-∞,-3)∪(4,+∞)B.(-∞,-4)∪(3,+∞)C.(-3,4)D.(-4,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将10个三好名额分到7个班中,每班至少一名,则分法种数为(  )
A.A${\;}_{10}^{7}$B.C${\;}_{10}^{7}$C.84D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,D为BC的中点,En为AC上的一列动点,且$\overrightarrow{{E}_{n}A}$=$\frac{1}{2}$an+1$\overrightarrow{{E}_{n}B}$-$\frac{1}{2}$(an-1)$\overrightarrow{{E}_{n}D}$.若a1=0,则an=(  )
A.1-($\frac{1}{2}$)nB.1-($\frac{1}{2}$)n-1C.($\frac{1}{2}$)n-1D.($\frac{1}{2}$)n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={2,x2,x},B={2,2+x,1+2x},且A=B,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P(1,-1)在抛物线C:y=ax2上,过点P作两条斜率互为相反数的直线分别交抛物线C于点A、B(异于点P).
(Ⅰ)求抛物线C的焦点坐标.
(Ⅱ)记直线AB交y轴于点(0,y0),求y0的取值范围.

查看答案和解析>>

同步练习册答案