精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)函数在区间)上有零点,求k的值;

2)若不等式对任意正实数x恒成立,求正整数m的取值集合.

【答案】103;(2.

【解析】

1)求导,可得时,函数单调递减,时,函数单调递增,然后利用零点存在定理,根据验证求解.

2)根据(1)分三种情况讨论,当时,不等式为.显然恒成立 时,转化为,令,求其最大值,当时,转化为,令,求其最小值即可.

1)令,得

时,,函数单调递减;

时,,函数单调递增,

所以的极小值为,又

所以在区间上存在一个零点,此时

因为

所以在区间上存在一个零点,此时.

综上,k的值为03

2)当时,不等式为.显然恒成立,此时

时,不等式,可化为

,则

由(1)可知,函数上单调递减,且存在一个零点

此时,即

时,,即,函数单调递增;

时,,即,函数单调递减.

有极大值,即最大值为

于是.

时,不等式,可化为

由(1)可知,函数上单调递增,且存在一个零点,同理可得.

综上可知.

,∴正整数m的取值集合为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,讨论函数的单调性;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,分别是椭圆的左、右焦点,直线与椭圆交于不同的两点,且.

1)求椭圆的方程;

2)已知直线经过椭圆的右焦点是椭圆上两点,四边形是菱形,求直线的方程;

3)已知直线不经过椭圆的右焦点,直线的斜率依次成等差数列,求直线轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有六名同学参加演讲比赛,编号分别为123456,比赛结果设特等奖一名,四名同学对于谁获得特等奖进行预测.说:不是1号就是2号获得特等奖;说:3号不可能获得特等奖;说:456号不可能获得特等奖;说:能获得特等奖的是456号中的一个.公布的比赛结果表明,中只有一个判断正确.根据以上信息,获得特等奖的是( )号同学.

A.1B.2C.3D.456号中的一个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,点在此抛物线上,,不过原点的直线与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.

(1)求抛物线C的方程;

(2)证明:直线恒过定点;

(3)若线段AB中点的纵坐标为2,求此时直线和圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx22pyp0)的焦点为F,直线l与抛物线C交于PQ两点.

1)若l过点F,抛物线C在点P处的切线与在点Q处的切线交于点G.证明:点G在定直线上.

2)若p2,点M在曲线y上,MPMQ的中点均在抛物线C上,求△MPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),则关于x的不等式的解集是(

A.B.

C.D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求的单调区间;

(2)若对于任意,都有,求的取值范围.

查看答案和解析>>

同步练习册答案