精英家教网 > 高中数学 > 题目详情
6.已知a,b,c为正实数,且a+b+c=3,证明:$\frac{{c}^{2}}{a}$+$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$≥3.

分析 由基本不等式,得$\frac{{c}^{2}}{a}$+a≥2c,$\frac{{a}^{2}}{b}$+b≥2a,$\frac{{b}^{2}}{c}$+c≥2b,相加即可证明.

解答 证:因为a,b,c为正实数,
所以由基本不等式,得$\frac{{c}^{2}}{a}$+a≥2c,$\frac{{a}^{2}}{b}$+b≥2a,$\frac{{b}^{2}}{c}$+c≥2b,当且仅当a=b=c=1时取等号
三式相加,得:$\frac{{c}^{2}}{a}$+$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$≥a+b+c.
又a+b+c=3,
所以$\frac{{c}^{2}}{a}$+$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$≥3.

点评 本题考查了不等式的证明,关键是掌握基本不等式成立的条件,一正二定三相等,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设α为锐角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$.
(1)求cos($α-\frac{π}{3}$)的值;
(2)求cos(2α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,|$\overrightarrow{c}$|=$\sqrt{3}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正方体ABCD-A1B1C1D1的棱长为2,点P是线段BD1的中点,M是线段B1C1上的动点,则三棱锥M-PBC的体积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.现有若干(大于20)件某种自然生长的中药材,从中随机抽取20件,其重量都精确到克,规定每件中药材重量不小于15克为优质品.如图所示的程序框图表示统计20个样本中的优质品数,其中m表示每件药材的重量,则图中①,②两处依次应该填的整数分别是14,19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,离心率为$\frac{\sqrt{3}}{3}$,点P在椭圆C上,且点P在x轴上的正投影恰为F1,在y轴上的正投影为点(0,$\frac{2\sqrt{3}}{3}$).
(1)求椭圆C的方程;
(2)过点F1且倾斜角为$\frac{5π}{6}$的直线l与椭圆C交于A,B两点,过点P且平行于直线l的直线交椭圆C于另一点Q,求证:四边形PABQ为平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在区间(0,$\frac{π}{2}$)上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题p:将函数y=cosx•sinx的图象向右平移$\frac{3π}{4}$个单位可得到y=$\frac{1}{2}$cos2x的图象;命题q:对?m>0,双曲线2x2-y2=m2的离心率为$\sqrt{3}$,则下列结论正确的是(  )
A.p是假命题B.¬p是真命题C.p∨q是真命题D.p∧q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l1:mx+y+1=0,l2:(m-3)x+2y-1=0,则“m=1”是“l1⊥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案