精英家教网 > 高中数学 > 题目详情
17.若|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,|$\overrightarrow{c}$|=$\sqrt{3}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.3

分析 求出|$\overrightarrow{a}+\overrightarrow{b}$|,根据数量积的定义即可得出最大值.

解答 解:($\overrightarrow{a}+\overrightarrow{b}$)2=${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=3,
∴|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{3}$,
∴$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$=($\overrightarrow{a}+\overrightarrow{b}$)$•\overrightarrow{c}$=|$\overrightarrow{a}+\overrightarrow{b}$||$\overrightarrow{c}$|cosθ≤|$\overrightarrow{a}+\overrightarrow{b}$||$\overrightarrow{c}$|=3.
故选:D.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若同时掷两颗均匀的骰子,则所得点数之和大于4的概率等于$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.按如图所示的程序框图,若输入a=81,则输出的i=(  )
A.14B.17C.19D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>b>0})$与双曲线${C_2}:{x^2}-\frac{y^2}{2}=1$的离心率相同,双曲线C1的左、右焦点分别为F1,F2,M是双曲线C1的一条渐近线上的点,且OM⊥MF2,若△OMF2的面积为$2\sqrt{2}$,则双曲线C1的实轴长是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合A={x|-3≤x≤1},集合B=$\left\{{x\left|{{2^x}<\frac{1}{4}}\right.}\right\}$,则A∩(∁UB)=(  )
A.{x|-2<x<1}B.{x|-3≤x<-2}C.{x|-2≤x≤1}D.{x|-3≤x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点(1,$\frac{\sqrt{3}}{2}$).
(Ⅰ)求E的方程;
(Ⅱ)是否存在直线l:y=kx+m相交于P,Q两点,且满足:①OP与OQ(O为坐标原点)的斜率之和为2;②直线l与圆x2+y2=1相切.若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,直线y=x被椭圆C截得的弦长为$\frac{4\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(x0,y0)是椭圆C上的动点,过原点O引两条射线l1,l2与圆M:(x-x02+(y-y02=$\frac{2}{3}$分别相切,且l1,l2的斜率k1,k2存在.
①试问k1•k2是否定值?若是,求出该定值,若不是,说明理由;
②若射线l1,l2与椭圆C分别交于点A,B,求|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c为正实数,且a+b+c=3,证明:$\frac{{c}^{2}}{a}$+$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(sin(π+ωx),2cosωx),$\overrightarrow{b}$=(2$\sqrt{3}$sin($\frac{π}{2}$+ωx),cosωx),(ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其图象上相邻的两个最低点之间的距离为π.
(Ⅰ)求函数f(x)的对称中心;
(Ⅱ)在锐角△ABC中,角A、B、C的对边分别为a、b、c,tanB=$\frac{\sqrt{3}ac}{{a}^{2}+{c}^{2}-{b}^{2}}$,求f(A)的取值范围.

查看答案和解析>>

同步练习册答案