精英家教网 > 高中数学 > 题目详情
8.按如图所示的程序框图,若输入a=81,则输出的i=(  )
A.14B.17C.19D.21

分析 模拟程序的运行,可得程序框图的功能是计算S=1+2+3+..i的值,当S>81时,输出i+1的值,由等差数列的求和公式即可计算得解.

解答 解:模拟程序的运行,可得程序框图的功能是计算S=1+2+3+..i的值,当S>81时,输出i+1的值.
由于S=1+2+3+…+i=$\frac{i(i+1)}{2}$,
当i=12时,S=$\frac{12×13}{2}$=78<81,
当i=13时,S=$\frac{13×14}{2}$=91>81,满足退出循环的条件,故输出i的值为13+1=14.
故选:A.

点评 本题考查的知识点是循环结构的程序框图的应用,模拟程序的运行得到程序框图的功能是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|(x-3)(x+1)≤0},B={x|-2<x≤2},则A∩B=(  )
A.[-2,-1]B.[-1,2]C.[-1,1]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在二项式${(\frac{1}{2x}+2x)^n}$的展开式中,第一、二项及最后两项的二项式系数之和共为18,则展开式中x4的系数为448.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设α为锐角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$.
(1)求cos($α-\frac{π}{3}$)的值;
(2)求cos(2α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,则输出 S的值为(  )
A.-lg9B.-1C.-lg11D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的三个内角A,B,C的对边分别是a,b,c,若向量$\overrightarrow{m}$=(a+c,sinB),$\overrightarrow{n}$=(b-c,sinA-sinC),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=tanAsinωxcosωx-cosAcos2ωx(ω>0),已知其图象的相邻两条对称轴间的距离为$\frac{π}{2}$,现将y=f(x)的图象上各点向左平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标伸长为原来的2倍,得到函数y=g(x)的图象,求g(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l与曲线y2=4x(y≥0)交于A,D两点(A在D的左侧),A,D两点在x轴上的射影分别为点B,C,且|BC|=2.
(Ⅰ)当点B的坐标为(1,0)时,求直线AD的斜率;
(Ⅱ)记△OAD的面积为S1,梯形ABCD的面积为S2,求$\frac{S_1}{S_2}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,|$\overrightarrow{c}$|=$\sqrt{3}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$的最大值是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在区间(0,$\frac{π}{2}$)上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案