·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ÇóµÃa2=4b2£¬½«µã£¨1£¬$\frac{\sqrt{3}}{2}$£©´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©½«Ö±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½£¬ÇóµÃm2+k=1£¬ÓÉ$\left\{\begin{array}{l}{¡÷£¾0}\\{1-k¡Ý0}\end{array}\right.$£¬¼´¿ÉÇóµÃkµÄȡֵ·¶Î§£¬Óɵ㵽ֱÏߵľàÀë¼´¿ÉÇóµÃkºÍmµÄÖµ£¬ÇóµÃÖ±ÏßlµÄ·½³Ì£®
½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒ⣬e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{{\sqrt{3}}}{2}$£¬Ôòa2=4b2£¬
ÓÉÍÖÔ²¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£®´úÈëÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬
½âµÃ£ºa2=4£¬b2=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôò$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬
ÕûÀíµÃ£º£¨1+4k2£©x2+8kmx+4£¨m2-1£©=0£¬
ÓÉx1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4£¨{m}^{2}-1£©}{1+4{k}^{2}}$£¬
ÓÉkOP+kOQ=$\frac{{y}_{1}}{{x}_{1}}$+$\frac{{y}_{2}}{{x}_{2}}$=$\frac{{y}_{1}{x}_{1}+{y}_{2}{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{£¨k{x}_{1}+m£©{x}_{2}+£¨k{x}_{2}+m£©{x}_{1}}{{x}_{1}{x}_{2}}$=2£¬
2£¨k-1£©x1x2+m£¨x1+x2£©=0£¬
¡à2£¨k-1£©¡Á$\frac{4£¨{m}^{2}-1£©}{1+4{k}^{2}}$+m¡Á£¨-$\frac{8km}{1+4{k}^{2}}$£©=0£¬
ÕûÀíµÃ£ºm2+k=1£¬
ÓÉ¡÷=16£¨4k2-m2+1£©=16£¨4k2+k£©£¬
$\left\{\begin{array}{l}{4{k}^{2}+k£¾0}\\{{m}^{2}=1-k¡Ý0}\end{array}\right.$£¬½âµÃ£ºk£¼-$\frac{1}{k}$£¬»ò0£¼k¡Ü1£¬
Ö±ÏßÓëÔ²x2+y2=1ÏàÇУ¬Ôò$\frac{ØmØ}{\sqrt{1+{k}^{2}}}$=1£¬
ÁªÁ¢½âµÃk=0£¨ÉáÈ¥£©£¬k=-1£¬
¡àm2=2£¬¼´m=¡À$\sqrt{2}$£¬
¡àÖ±ÏßlµÄ·½³Ìy=x¡À$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {x|1£¼x£¼5} | B£® | {x|x£¾5} | C£® | {1} | D£® | {1£¬5} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\sqrt{2}$ | C£® | $\sqrt{3}$ | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | k¡Ü8 | B£® | k¡Ü9 | C£® | k¡Ü10 | D£® | k¡Ü11 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com