2£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒ¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£®
£¨¢ñ£©ÇóEµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚÖ±Ïßl£ºy=kx+mÏཻÓÚP£¬QÁ½µã£¬ÇÒÂú×㣺¢ÙOPÓëOQ£¨OÎª×ø±êÔ­µã£©µÄбÂÊÖ®ºÍΪ2£»¢ÚÖ±ÏßlÓëÔ²x2+y2=1ÏàÇУ®Èô´æÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ÇóµÃa2=4b2£¬½«µã£¨1£¬$\frac{\sqrt{3}}{2}$£©´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬¼´¿ÉÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©½«Ö±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½£¬ÇóµÃm2+k=1£¬ÓÉ$\left\{\begin{array}{l}{¡÷£¾0}\\{1-k¡Ý0}\end{array}\right.$£¬¼´¿ÉÇóµÃkµÄȡֵ·¶Î§£¬Óɵ㵽ֱÏߵľàÀë¼´¿ÉÇóµÃkºÍmµÄÖµ£¬ÇóµÃÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒ⣬e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{{\sqrt{3}}}{2}$£¬Ôòa2=4b2£¬
ÓÉÍÖÔ²¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£®´úÈëÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{4{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬
½âµÃ£ºa2=4£¬b2=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨¢ò£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôò$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬
ÕûÀíµÃ£º£¨1+4k2£©x2+8kmx+4£¨m2-1£©=0£¬
ÓÉx1+x2=-$\frac{8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4£¨{m}^{2}-1£©}{1+4{k}^{2}}$£¬
ÓÉkOP+kOQ=$\frac{{y}_{1}}{{x}_{1}}$+$\frac{{y}_{2}}{{x}_{2}}$=$\frac{{y}_{1}{x}_{1}+{y}_{2}{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{£¨k{x}_{1}+m£©{x}_{2}+£¨k{x}_{2}+m£©{x}_{1}}{{x}_{1}{x}_{2}}$=2£¬
2£¨k-1£©x1x2+m£¨x1+x2£©=0£¬
¡à2£¨k-1£©¡Á$\frac{4£¨{m}^{2}-1£©}{1+4{k}^{2}}$+m¡Á£¨-$\frac{8km}{1+4{k}^{2}}$£©=0£¬
ÕûÀíµÃ£ºm2+k=1£¬
ÓÉ¡÷=16£¨4k2-m2+1£©=16£¨4k2+k£©£¬
$\left\{\begin{array}{l}{4{k}^{2}+k£¾0}\\{{m}^{2}=1-k¡Ý0}\end{array}\right.$£¬½âµÃ£ºk£¼-$\frac{1}{k}$£¬»ò0£¼k¡Ü1£¬
Ö±ÏßÓëÔ²x2+y2=1ÏàÇУ¬Ôò$\frac{Ø­mØ­}{\sqrt{1+{k}^{2}}}$=1£¬
ÁªÁ¢½âµÃk=0£¨ÉáÈ¥£©£¬k=-1£¬
¡àm2=2£¬¼´m=¡À$\sqrt{2}$£¬
¡àÖ±ÏßlµÄ·½³Ìy=x¡À$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏA={x|x2-2x-8£¾0}£¬B={1£¬5}£¬Ôò¼¯ºÏ£¨∁UA£©¡ÉBΪ£¨¡¡¡¡£©
A£®{x|1£¼x£¼5}B£®{x|x£¾5}C£®{1}D£®{1£¬5}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÈôÏòÁ¿$\overrightarrow{m}$=£¨a+c£¬sinB£©£¬$\overrightarrow{n}$=£¨b-c£¬sinA-sinC£©£¬ÇÒ$\overrightarrow{m}$¡Î$\overrightarrow{n}$£®
£¨¢ñ£©Çó½ÇAµÄ´óС£»
£¨¢ò£©É躯Êýf£¨x£©=tanAsin¦Øxcos¦Øx-cosAcos2¦Øx£¨¦Ø£¾0£©£¬ÒÑÖªÆäͼÏóµÄÏàÁÚÁ½Ìõ¶Ô³ÆÖá¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬ÏÖ½«y=f£¨x£©µÄͼÏóÉϸ÷µãÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔÙ½«ËùµÃͼÏóÉϸ÷µãµÄºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶£¬µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£¬Çóg£¨x£©ÔÚ[0£¬¦Ð]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1+lnx}{x-1}$£®
£¨I£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨II£©Èô²»µÈʽf£¨x£©£¾$\frac{k}{x}£¨{x£¾1}£©$ºã³ÉÁ¢£¬ÇóÕûÊýkµÄ×î´óÖµ£»
£¨III£©ÇóÖ¤£º£¨1+1¡Á2£©•£¨1+2¡Á3£©¡­£¨1+n£¨n¡Á1£©£©£¾e2n-3£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô|$\overrightarrow{a}$|=$\sqrt{2}$£¬|$\overrightarrow{b}$|=1£¬|$\overrightarrow{c}$|=$\sqrt{3}$£¬ÇÒ$\overrightarrow{a}$•$\overrightarrow{b}$=0£¬Ôò$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®1B£®$\sqrt{2}$C£®$\sqrt{3}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈçͼÊä³öSµÄֵΪ-1£¬ÄÇôÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®k¡Ü8B£®k¡Ü9C£®k¡Ü10D£®k¡Ü11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ2£¬µãPÊÇÏß¶ÎBD1µÄÖе㣬MÊÇÏß¶ÎB1C1Éϵ͝µã£¬ÔòÈýÀâ×¶M-PBCµÄÌå»ýΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{3}$£¬µãPÔÚÍÖÔ²CÉÏ£¬ÇÒµãPÔÚxÖáÉϵÄÕýͶӰǡΪF1£¬ÔÚyÖáÉϵÄÕýͶӰΪµã£¨0£¬$\frac{2\sqrt{3}}{3}$£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãF1ÇÒÇãб½ÇΪ$\frac{5¦Ð}{6}$µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬¹ýµãPÇÒÆ½ÐÐÓÚÖ±ÏßlµÄÖ±Ïß½»ÍÖÔ²CÓÚÁíÒ»µãQ£¬ÇóÖ¤£ºËıßÐÎPABQΪƽÐÐËıßÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y¡Ü0\\ y¡Ü10-2x\\ x-1¡Ý0\end{array}$£¬Ôòz=2x-yµÄ×îСֵΪ-6£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸