精英家教网 > 高中数学 > 题目详情
已知f(x)=2+log3x,求函数y=[f(x)]2+f(x2),x∈[
181
,9]
的最大值与最小值.
分析:将f(x)=2+log3x代入y=[f(x)]2+f(x2)中,整理化简为关于log3x的函数,通过x∈[
1
81
,9]
,利用换元法求最值.
解答:解:∵f(x)=2+log3x
∴y=log32x+6log3x+6
又∵
1
81
≤x≤9
,且
1
81
≤x2≤9,
解可得
1
9
≤x≤3,
则有-1≤log3x≤1
若令log3x=t,则问题转化为求函数
g(t)=t2+6t+6,-2≤t≤1的最值.
∵g(t)=t2+6t+6=(t+3)2-3
∴当-2≤t≤1
∴g(t)max=g(1)=13,g(t)min=g(1)=-2
所以所求函数的最大值是13,最小值是-2.
点评:此题是个中档题.本题考查换元法求函数的值域问题,以及对数函数的单调性与特点,在使用换元法时,注意范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.
(Ⅰ)设a=1,b=2,若h (x)为偶函数,求h(
2
)

(Ⅱ)设b>0,若h (x)同时也是g(x)、l(x)在R上生成的一个函数,求a+b的最小值;
(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=
1
2
x2+mx+
7
2
,(m<0)
,直线l与函数f(x)、g(x)的图象都相切,且与f(x)图象的切点为(1,f(x)),则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①f(x)=ax-l+1(a>0,且a≠1)的图象恒过定点(1,2);
②已知f(x)=
(
1
2
)x,x>3
f(x+1),x≤3
则f(log25)=
1
10

sin(π-α)cos(-α)cos(
2
-α)
cos(
π
2
+α)sin(-π-α)
=cosα

其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|x+l|+|x-2|,g(x)=|x+l|-|x-a|+a(a∈R).
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若不等式f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案