精英家教网 > 高中数学 > 题目详情
如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是(  )
A.B.C.D.
D
由椭圆定义得,|AF1|+|AF2|=4,
|F1F2|=2=2,
因为四边形AF1BF2为矩形,
所以|AF1|2+|AF2|2=|F1F2|2=12,
所以2|AF1||AF2|=(|AF1|+|AF2|)2-(|AF1|2+|AF2|2)=16-12=4,
所以(|AF2|-|AF1|)2=|AF1|2+|AF2|2-2|AF1||AF2|=12-4=8,
所以|AF2|-|AF1|=2,
因此对于双曲线有a=,c=,
所以C2的离心率e==.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:+=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为.
(1)求椭圆E的方程;
(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足=+,证明·为定值,并求出该值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1、F2是椭圆=1(a>b>0)的左、右焦点,点M在x轴上,且,过点F2的直线与椭圆交于A、B两点,且AM⊥x轴,·=0.

(1)求椭圆的离心率;
(2)若△ABF1的周长为,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的右准线方程是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆+y2=1的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆右焦点且斜率为1的直线被椭圆截得的弦MN的长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是(  )
A.+=1B.+=1
C.+y2=1D.+=1

查看答案和解析>>

同步练习册答案