精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
(1)+y2=1  (2)y=x+或y=-x-

解:(1)因为椭圆C1的左焦点为F1(-1,0),
所以c=1.
将点P(0,1)代入椭圆方程+=1,
=1,即b=1.
所以a2=b2+c2=2.
所以椭圆C1的方程为+y2=1.
(2)由题意可知,直线l的斜率显然存在且不等于0,
设直线l的方程为y=kx+m,

消去y并整理得(1+2k2)x2+4kmx+2m2-2=0.
因为直线l与椭圆C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.
整理得2k2-m2+1=0.①
消去y并整理得k2x2+(2km-4)x+m2=0.
因为直线l与抛物线C2相切,
所以Δ2=(2km-4)2-4k2m2=0,
整理得km=1.②
综合①②,解得
所以直线l的方程为y=x+或y=-x-.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线l经过点(1,0)且一个方向向量d=(1,1).椭圆C:=1(m>1)的左焦点为F1.若直线l与椭圆C交于A,B两点,满足·=0,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,.
 
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是方程表示椭圆或双曲线的 (  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆+=1上有两个动点P、Q,E(3,0),EP⊥EQ,则·的最小值为(  )
A.6B.3-C.9D.12-6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上一点,且,若△PF1F2的面积为9,则b=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以F1(-1,0),F2(1,0)为焦点且与直线x-y+3=0有公共点的椭圆中,离心率最大的椭圆方程是(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

同步练习册答案