精英家教网 > 高中数学 > 题目详情
9.306、522、738的最大公约数为18.

分析 要求三个数的最大公约数,我们可以先求出前两个数的最大公约数,再求出所得公约数与第三个数的最大公约数,即可得到答案.

解答 解:∵306、522的最大公约数是18,
522、738的最大公约数也为18,
故306、522、738的最大公约数为18.
故答案为:18.

点评 本题考查的知识点是最大公因子,其中在求最大公约数时,要利用辗转相除法,或更相减损术,这是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别是角A,B,C的对边,如果b=2,c=2$\sqrt{3}$,C=$\frac{2}{3}$π,则S△ABC=_3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\sqrt{1-(x-2016)^{2}}$+2017,则对于满足2016<x1<x2<2017的任意实数x1,x2,有(  )
A.x1f(x2)>x2f(x1B.x1f(x2)<x2f(x1C.x1f(x2)=x2f(x1D.x1f(x1)=x2f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,侧棱AA1长为3,且∠A1AB=∠A1AD=120°,则AC1=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在[-1,2]内,任取一个数,使“-2<x<$\frac{1}{3}$”的概率是(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)在边长为1的正方形ABCD内任取一点M,求事件“|AM|≤1”的概率;
(2)某班在一次数学活动中,老师让全班56名同学每人随机写下一对都小于1的正实数x、y,统计出两数能与1构成锐角三角形的三边长的数对(x,y)共有12对,请据此估计π的近似值(精确到0.001).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出一个如图所示的程序框图,若要使输入的x值与输出的y值相等,则这样的x值的个数是3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=log3(1+x)-log3(1-x).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)已知函数g(x)=log${\;}_{\sqrt{3}}$$\frac{1+x}{k}$,当x∈[$\frac{1}{3}$,$\frac{1}{2}$]时,不等式 f(x)≥g(x)有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U={a,b,c,d,e,f},集合A={a,b,e},B={b,d,f},则(∁UA)∪B为(  )
A.{a,e}B.{c}C.{d,f}D.{b,c,d,f}

查看答案和解析>>

同步练习册答案