精英家教网 > 高中数学 > 题目详情
19.已知全集U={a,b,c,d,e,f},集合A={a,b,e},B={b,d,f},则(∁UA)∪B为(  )
A.{a,e}B.{c}C.{d,f}D.{b,c,d,f}

分析 根据补集与并集的定义进行计算即可.

解答 解:全集U={a,b,c,d,e,f},
集合A={a,b,e},
B={b,d,f},
所以∁UA={c,d,f};
所以(∁UA)∪B={b,c,d,f}.
故选:D.

点评 本题考查了补集和并集的定义与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.306、522、738的最大公约数为18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+1,x<1\\{log_2}x,x≥1\end{array}$,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC满足BC•AC=2$\sqrt{2}$,若C=$\frac{3π}{4}$,$\frac{sinA}{sinB}$=$\frac{1}{2cos(A+B)}$,则AB=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某中学举行升旗仪式,在坡度为15°的看台E点和看台的坡脚A点,分别测得旗杆顶部的仰角分别为30°和60°,量的看台坡脚A点到E点在水平线上的射影B点的距离为10cm,则旗杆的高CD的长是$10({3-\sqrt{3}})$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若tanα=3,则sin2α=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC的内角A,B,C的对边分别为a,b,c,已2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若c=$\sqrt{7}$,△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某药厂在动物体内进行新药试验,已知每投放剂量为m(m>0)的药剂后,经过x小时该药剂在动物体内释放的浓度y(y毫克/升)满足函数y=mf(x),其中f(x)=$\left\{\begin{array}{l}-\frac{1}{2}{x^2}+2x+8,0<x≤4\\-\frac{x}{2}-{log_2}x+12,4<x≤16\end{array}$当药剂在动物体内释放的浓度不低于12(毫克/升)时,称为该药剂达到有效.
(1)为了使在8小时之内(从投放药剂算起包括8小时)始终有效,求应该投放的药剂m的最小值;
(2)若m=2,k 为整数,若该药在k 小时之内始终有效,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.
(1)求A,ω,φ的值;
(2)设θ为锐角,且f(θ)=-$\frac{3}{5}\sqrt{3}$,求f(θ-$\frac{π}{6}$)的值.

查看答案和解析>>

同步练习册答案