精英家教网 > 高中数学 > 题目详情
4.若tanα=3,则sin2α=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

分析 利用同角三角函数的基本关系、二倍角的正弦公式,求得sin2α的值.

解答 解:tanα=3,则sin2α=$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{2tanα}{{tan}^{2}α+1}$=$\frac{3}{5}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系,二倍角的正弦公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)在边长为1的正方形ABCD内任取一点M,求事件“|AM|≤1”的概率;
(2)某班在一次数学活动中,老师让全班56名同学每人随机写下一对都小于1的正实数x、y,统计出两数能与1构成锐角三角形的三边长的数对(x,y)共有12对,请据此估计π的近似值(精确到0.001).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={x|$\frac{x-3}{x+1}$≤0},N={-3,-1,1,3,5},则M∩N=(  )
A.{1,3}B.{-1,1,3}C.{-3,1}D.{-3,-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元,设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于(  )
A.6B.7C.8D.7或8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U={a,b,c,d,e,f},集合A={a,b,e},B={b,d,f},则(∁UA)∪B为(  )
A.{a,e}B.{c}C.{d,f}D.{b,c,d,f}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p:-x2-2x+8≥0,q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若“¬p”是“¬q”的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.“直线l垂直于平面α内的两条直线”是“直线l垂直于平面α”的必要不充分条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若随机地从1,2,3,4,5五个数中选出两个数,则这两个数恰好为一奇一偶的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$24+12\sqrt{3}$B.$24+5\sqrt{3}$C.$12+15\sqrt{3}$D.$12+12\sqrt{3}$

查看答案和解析>>

同步练习册答案