精英家教网 > 高中数学 > 题目详情
15.已知集合M={x|$\frac{x-3}{x+1}$≤0},N={-3,-1,1,3,5},则M∩N=(  )
A.{1,3}B.{-1,1,3}C.{-3,1}D.{-3,-1,1}

分析 求出集合M,然后利用交集的运算法则化简求解即可.

解答 解:集合M={x|$\frac{x-3}{x+1}$≤0}={x|-1<x≤3},N={-3,-1,1,3,5},
则M∩N={1,3}.
故选:A.

点评 本题考查集合的基本运算,交集的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:
第一步:构造数列1,$\frac{1}{2},\frac{1}{3},\frac{1}{4}$,…,$\frac{1}{n}$①
第二步:将数列①的各项乘以$\frac{n}{2}$,得到一个新数列a1,a2,a3,…,an
则a1a2+a2a3+a3a4+…+an-1an=(  )
A.$\frac{{n}^{2}}{4}$B.$\frac{(n-1)^{2}}{4}$C.$\frac{n(n-1)}{4}$D.$\frac{n(n+1)}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥25对任意正实数x,y恒成立,则正实数a的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是(  )
A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+1,x<1\\{log_2}x,x≥1\end{array}$,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个全等的等腰直角三角形,俯视图是圆心角为$\frac{π}{2}$的扇形,则该几何体的侧面积为(  )
A.2B.4+πC.4+$\sqrt{2}$πD.4+π+$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC满足BC•AC=2$\sqrt{2}$,若C=$\frac{3π}{4}$,$\frac{sinA}{sinB}$=$\frac{1}{2cos(A+B)}$,则AB=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若tanα=3,则sin2α=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.
(1)求异面直线AP,BM所成角的余弦值;
(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为$\frac{4}{5}$,求λ的值.

查看答案和解析>>

同步练习册答案