8£®Ä³Ò©³§ÔÚ¶¯ÎïÌåÄÚ½øÐÐÐÂÒ©ÊÔÑ飬ÒÑ֪ÿͶ·Å¼ÁÁ¿Îªm£¨m£¾0£©µÄÒ©¼Áºó£¬¾­¹ýxСʱ¸ÃÒ©¼ÁÔÚ¶¯ÎïÌåÄÚÊͷŵÄŨ¶Èy£¨yºÁ¿Ë/Éý£©Âú×㺯Êýy=mf£¨x£©£¬ÆäÖÐf£¨x£©=$\left\{\begin{array}{l}-\frac{1}{2}{x^2}+2x+8£¬0£¼x¡Ü4\\-\frac{x}{2}-{log_2}x+12£¬4£¼x¡Ü16\end{array}$µ±Ò©¼ÁÔÚ¶¯ÎïÌåÄÚÊͷŵÄŨ¶È²»µÍÓÚ12£¨ºÁ¿Ë/Éý£©Ê±£¬³ÆÎª¸ÃÒ©¼Á´ïµ½ÓÐЧ£®
£¨1£©ÎªÁËʹÔÚ8Сʱ֮ÄÚ£¨´ÓͶ·ÅÒ©¼ÁËãÆð°üÀ¨8Сʱ£©Ê¼ÖÕÓÐЧ£¬ÇóÓ¦¸ÃͶ·ÅµÄÒ©¼ÁmµÄ×îСֵ£»
£¨2£©Èôm=2£¬k ÎªÕûÊý£¬Èô¸ÃÒ©ÔÚk Ð¡Ê±Ö®ÄÚʼÖÕÓÐЧ£¬ÇókµÄ×î´óÖµ£®

·ÖÎö £¨1£©Çó³öº¯ÊýµÄ½âÎöʽ£¬¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐԿɵùØÓÚmµÄ²»µÈʽ×飬½âµÃ¼´¿ÉÇó³ömµÄ·¶Î§£¬ÎÊÌâµÃÒÔ½â¾ö£¬¡¯
£¨2£©ÓÉm=2£¬µÃµ½y=2f£¨x£©£¬¸ù¾Ýº¯ÊýµÄ¶¨ÒåÓò·Ö¶ÎÌÖÂÛ¼´¿ÉÇó³ö£®

½â´ð ½â£º£¨1£©ÓÉ$y=mf£¨x£©=\left\{\begin{array}{l}-\frac{m}{2}{£¨x-2£©^2}+10m£¬0£¼x¡Ü4\\-\frac{mx}{2}-m{log_2}x+12m£¬4£¼x¡Ü16\end{array}\right.$£¬
¿ÉÖªÔÚÇø¼ä£¨0£¬4]ÉÏÓУ¬¼´8m¡Üy¡Ü10m£¬
ÓÖf£¨x£©ÔÚÇø¼ä£¨4£¬16]Éϵ¥µ÷µÝ¼õ£¬mf£¨8£©=5m£¬
Ϊʹy¡Ý12ºã³ÉÁ¢£¬Ö»Òª$\left\{{\begin{array}{l}{8m¡Ý12}\\{5m¡Ý12}\end{array}}\right.$£¬
¼´$m¡Ý\frac{12}{5}$£¬¿ÉµÃ$m¡Ý\frac{12}{5}$£®
¼´£ºÎªÁËʹÔÚ8Сʱ֮ÄÚ´ïµ½ÓÐЧ£¬Í¶·ÅµÄÒ©¼Á¼ÁÁ¿mµÄ×îСֵΪ$\frac{12}{5}$£®
£¨2£©m=2ʱ£¬Éè$y=g£¨x£©=\left\{\begin{array}{l}-{x^2}+4x+16£¬0£¼x¡Ü4\\-x-2{log_2}x+24£¬4£¼x¡Ü16\end{array}\right.$
µ±0£¼x¡Ü4ʱ£¬16¡Ü-x2+4x+16¡Ü20£¬ÏÔÈ»·ûºÏÌâÒ⣬
ÓÖf£¨x£©ÔÚÇø¼ä£¨4£¬16]Éϵ¥µ÷µÝ¼õ£¬
ÓÉg£¨6£©=18-2log26=18-log236£¾12£¬
g£¨7£©=17-2log27=17-log249£¼12£¬
¿ÉµÃ k¡Ü6£¬¼´kµÄ×î´óֵΪ6£®

µãÆÀ ±¾Ì⿼²éº¯ÊýÔÚÉú²úÉú»îÖеÄʵ¼ÊÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ·ÖÎöÊýÁ¿¼äµÄÏ໥¹ØÏµ£¬ºÏÀíµØ½øÐеȼÛת»¯£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªf£¨x£©=log3£¨1+x£©-log3£¨1-x£©£®
£¨1£©ÅжϺ¯Êýf£¨x£©µÄÆæÅ¼ÐÔ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨2£©ÒÑÖªº¯Êýg£¨x£©=log${\;}_{\sqrt{3}}$$\frac{1+x}{k}$£¬µ±x¡Ê[$\frac{1}{3}$£¬$\frac{1}{2}$]ʱ£¬²»µÈʽ f£¨x£©¡Ýg£¨x£©Óн⣬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑ֪ȫ¼¯U={a£¬b£¬c£¬d£¬e£¬f}£¬¼¯ºÏA={a£¬b£¬e}£¬B={b£¬d£¬f}£¬Ôò£¨∁UA£©¡ÈBΪ£¨¡¡¡¡£©
A£®{a£¬e}B£®{c}C£®{d£¬f}D£®{b£¬c£¬d£¬f}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¡°Ö±Ïßl´¹Ö±ÓÚÆ½Ãæ¦ÁÄÚµÄÁ½ÌõÖ±Ïß¡±ÊÇ¡°Ö±Ïßl´¹Ö±ÓÚÆ½Ãæ¦Á¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£¨Ìî¡°³ä·Ö²»±ØÒª¡±£¬¡°±ØÒª²»³ä·Ö¡±£¬¡°³äÒª¡±£¬¡°¼È²»³ä·ÖÒ²²»±ØÒª¡±£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=BC=4£¬AA1=3£¬ÔòËÄÃæÌåA1BC1DµÄÌå»ýΪ16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÈôËæ»úµØ´Ó1£¬2£¬3£¬4£¬5Îå¸öÊýÖÐÑ¡³öÁ½¸öÊý£¬ÔòÕâÁ½¸öÊýÇ¡ºÃÎªÒ»ÆæÒ»Å¼µÄ¸ÅÂÊΪ$\frac{3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬ÒÑÖªD£¬E·Ö±ðΪBC£¬B1C1µÄÖе㣬µãFÔÚÀâCC1ÉÏ£¬ÇÒEF¡ÍC1D£®ÇóÖ¤£º
£¨1£©Ö±ÏßA1E¡ÎÆ½ÃæADC1£»
£¨2£©Ö±ÏßEF¡ÍÆ½ÃæADC1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}£¬£¨x¡Ý1£©}\\{x£¬£¨x£¼1£©}\end{array}\right.$£¬Ôòf£¨log23£©µÄֵΪ£¨¡¡¡¡£©
A£®2B£®3C£®log23D£®log32

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èôº¯Êýf£¨x£©=a-x£¨a£¾0ÇÒa¡Ù1£©ÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬Ôòg£¨x£©=loga£¨x-1£©µÄ´óÖÂͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸