精英家教网 > 高中数学 > 题目详情
20.如图,在正三棱柱ABC-A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:
(1)直线A1E∥平面ADC1
(2)直线EF⊥平面ADC1

分析 (1)连接ED,∵D,E分别为BC,B1C1的中点.可得四边形B1BDE是平行四边形,进而证明四边形AA1ED是平行四边形,再利用线面平行的判定定理即可证明直线A1E∥平面ADC1
(2)在正三棱柱ABC-A1B1C1中,利用线面垂直的判定与性质定理可得AD⊥BB1,又△ABC是正三角形,可得AD⊥BC,再利用线面垂直的判定定理即可证明结论.

解答 证明:(1)连接ED,∵D,E分别为BC,B1C1的中点,
∴B1E∥BD且B1E=BD,
∴四边形B1BDE是平行四边形,
∴BB1∥DE且BB1=DE,又BB1∥AA1且BB1=AA1
∴AA1∥DE且AA1=DE,
∴四边形AA1ED是平行四边形,
∴A1E∥AD,又∵A1E?平面ADC1,AD?平面ADC1
∴直线A1E∥平面ADC1
(2)在正三棱柱ABC-A1B1C1中,BB1⊥平面ABC,
又AD?平面ABC,所以AD⊥BB1
又△ABC是正三角形,且D为BC的中点,∴AD⊥BC,
又BB1,BC?平面B1BCC1,BB1∩BC=B,
∴AD⊥平面B1BCC1
又EF?平面B1BCC1,∴AD⊥EF,
又EF⊥C1D,C1D,AD?平面ADC1,C1D∩AD=D,
∴直线EF⊥平面ADC1

点评 本题考查了空间位置关系、线面平行与垂直的判定性质定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+1,x<1\\{log_2}x,x≥1\end{array}$,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC的内角A,B,C的对边分别为a,b,c,已2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若c=$\sqrt{7}$,△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某药厂在动物体内进行新药试验,已知每投放剂量为m(m>0)的药剂后,经过x小时该药剂在动物体内释放的浓度y(y毫克/升)满足函数y=mf(x),其中f(x)=$\left\{\begin{array}{l}-\frac{1}{2}{x^2}+2x+8,0<x≤4\\-\frac{x}{2}-{log_2}x+12,4<x≤16\end{array}$当药剂在动物体内释放的浓度不低于12(毫克/升)时,称为该药剂达到有效.
(1)为了使在8小时之内(从投放药剂算起包括8小时)始终有效,求应该投放的药剂m的最小值;
(2)若m=2,k 为整数,若该药在k 小时之内始终有效,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设Sn是等差数列{an}的前n项和,且a2=3,S4=16,则S9的值为81.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.
(1)求异面直线AP,BM所成角的余弦值;
(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为$\frac{4}{5}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等比数列{an}中,若a5=1,a8=8,则公比q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,且A>0,ω>0,0<φ<π)的部分图象如图所示.
(1)求A,ω,φ的值;
(2)设θ为锐角,且f(θ)=-$\frac{3}{5}\sqrt{3}$,求f(θ-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$的定义域为(  )
A.{x|x≥-3且x≠-2}B.{x|x≥-3且x≠2}C.{x|x≥-3}D.{x|x≥-2且x≠3}

查看答案和解析>>

同步练习册答案