精英家教网 > 高中数学 > 题目详情
11.过点P(1,-3)的直线既与抛物线y=x2相切,又与圆(x-2)2+y2=5相切,则切线的斜率为(  )
A.-6B.-2C.-1D.3

分析 设切线切抛物线y=x2于点(a,a2),求出求出的斜率,得到切线方程,利用切线与圆相切,判断切线的斜率即可.

解答 解:设切抛物线y=x2于点(a,a2)可得y′=2x$⇒{k_切}=2a=\frac{{{a^2}+3}}{a-1}⇒{a^2}-2a-3=0⇒a=3或a=-1$,a=3时,切线方程为y=6x-9不与圆相切,所以a=3(舍去),
当a=-1时,切线方程为y=-2x-1与圆相切,因此a=-1成立,
这时K=-2,
故选:B.

点评 本题考查抛物线的简单性质的应用,切线方程的求法,直线与圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)左焦点F1的直线交双曲线左支于A,B两点,C是双曲线右支上一点,且A,C在x轴的异侧,若满足|OA|=|OF1|=|OC|,|CF1|=2|BF1|,则双曲线的离心率为$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得$f({x_0})<2ln({{x_0}+a})+{x_0}^2$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ex(x3-a)(a∈R)在(-3,0)单调递减,则a的范围是(  )
A.[0,+∞)B.[2,4]C.[4,+∞)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=lnx-{x^2}+f'(\frac{1}{2})•\frac{x+2}{2}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:$(\frac{1}{2}{x^2}+x+1)f(x)<2{e^x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某学校为了制定治理学校门口上学、方向期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从其中随机抽取的50份调查问卷,得到了如下的列联表.
同意限定区域停车不同意限定区域停车合计
18725
121325
合计302050
(Ⅰ)学校计划在同意限定区域停车的家长中,按照分层抽样的方法,随机抽取5人在上学、放学期间在学校门口参与维持秩序.在随机抽取的5人中,选出2人担任召集人,求至少有一名女性的概率?
(Ⅱ)已知在同意限定区域停车的12位女性家长中,有3位日常开车接送孩子.现从这12位女性家长中随机抽取3人参与维持秩序,记参与维持秩序的女性家长中,日常开车接送孩子的女性家长人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a∈[1,6],则函数$y=\frac{{{x^2}+a}}{x}$在区间[2,+∞)内单调递增的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.

根据以上统计图来判断以下说法错误的是(  )
A.2013年农民工人均月收入的增长率是10%
B.2011年农民工人均月收入是2205元
C.小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”
D.2009年到2013年这五年中2013年农民工人均月收入最高

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;….设第n次“扩展”后所得数列为1,x1,x2,…,xm,2,并记an=log2(1•x1•x2•…•xm•2),则数列{an}的通项公式为${a_n}=\frac{{{3^n}+1}}{2}$,n∈N*.

查看答案和解析>>

同步练习册答案