分析 取双曲线的右焦点F2,连接CF2,延长交双曲线于D,连接AF2,DF1,由平面几何的性质可得四边形F1AF2C为矩形,设|CF1|=2|BF1|=2m,运用双曲线的定义和对称性,结合勾股定理,化简可得3m=4a,代入方程结合离心率公式,即可得到所求.
解答
解:取双曲线的右焦点F2,连接CF2,延长交双曲线于D,
连接AF2,DF1,
由|OA|=|OF1|=|OC|=|OF2|=c,
可得四边形F1AF2C为矩形,
设|CF1|=2|BF1|=2m,
由对称性可得|DF2|=m,|AF1|=$\sqrt{4{c}^{2}-4{m}^{2}}$,
即有|CF2|=$\sqrt{4{c}^{2}-4{m}^{2}}$,
由双曲线的定义可得2a=|CF1|-|CF2|=2m-$\sqrt{4{c}^{2}-4{m}^{2}}$,①
在直角三角形DCF1中,|DC|=m+$\sqrt{4{c}^{2}-4{m}^{2}}$,|CF1|=2m,
|DF1|=2a+m,
可得(2a+m)2=(2m)2+(m+$\sqrt{4{c}^{2}-4{m}^{2}}$)2,②
由①②可得3m=4a,即m=$\frac{4a}{3}$,
代入①可得,2a=$\frac{8a}{3}$-$\sqrt{4{c}^{2}-\frac{64{a}^{2}}{9}}$,
化简可得c2=$\frac{17}{9}$a2,
即有e=$\frac{c}{a}$=$\frac{\sqrt{17}}{3}$.
故答案为:$\frac{\sqrt{17}}{3}$.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和平面几何的性质,主要是勾股定理的运用,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2-i | B. | 2+i | C. | 4-i | D. | 4+i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com