精英家教网 > 高中数学 > 题目详情
6.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BCE,BE⊥CE,AB=BE=EC=2,G,F分别是线段BE,DC的中点.
(I)求证:GF∥平面ADE;
(II)求GF与平面ABE所成角的正切值.

分析 (Ⅰ)取AE的中点H,连接HG,HD,由G是BE的中点,F是CD中点,推导出四边形HGFD是平行四边形,从而GF∥DH,由此能证明GF∥平面ADE.
(II)过B作BQ∥EC,以D为原点,BE、BQ、BA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出GF与平面ABE所成角的正切值.

解答 证明:(Ⅰ)如图,取AE的中点H,连接HG,HD,又G是BE的中点,
∴GH∥AB,且GH=$\frac{1}{2}$AB,
又F是CD中点,∴DF=$\frac{1}{2}$CD,
由四边形ABCD是矩形得,AB∥CD,AB=CD,
∴GH∥DF,且GH=DF.∴四边形HGFD是平行四边形,
∴GF∥DH,又DH?平面ADE,GF?平面ADE,
∴GF∥平面ADE.
解:(II)如图,在平面BEC内,过B作BQ∥EC,
∵BE⊥CE,∴BQ⊥BE,
又∵AB⊥平面BEC,∴AB⊥BE,AB⊥BQ,
以D为原点,BE、BQ、BA所在直线分别为x,y,z轴,建立空间直角坐标系,
则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1),G(1,0,0),
$\overrightarrow{GF}$=(1,2,1),平面ABE的法向量$\overrightarrow{n}$=(0,1,0),
设GF与平面ABE所成角的平面角为θ,
则sinθ=$\frac{|\overrightarrow{GF}•\overrightarrow{n}|}{|\overrightarrow{GF}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{6}}$,∴cosθ=$\sqrt{1-(\frac{2}{\sqrt{6}})^{2}}$=$\frac{\sqrt{2}}{\sqrt{6}}$,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{\frac{2}{\sqrt{6}}}{\frac{\sqrt{2}}{\sqrt{6}}}$=$\sqrt{2}$.
∴GF与平面ABE所成角的正切值为$\sqrt{2}$.

点评 本题考查线面平行的证明,考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知集合M={x|y=$\sqrt{1-3x}$},集合N={x|x2-1<0},则M∩N=(  )
A.{x|-1<x≤$\frac{1}{3}$}B.{x|x≥$\frac{1}{3}$}C.{x|x≤$\frac{1}{3}$}D.{x|$\frac{1}{3}$≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an},若a12=4,a18=8,则a36为(  )
A.32B.64C.128D.256

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=(x-a)2+(ln x2-2a)2,其中x>0,a∈R,存在x0使得f(x0)≤b成立,则实数b的最小值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)左焦点F1的直线交双曲线左支于A,B两点,C是双曲线右支上一点,且A,C在x轴的异侧,若满足|OA|=|OF1|=|OC|,|CF1|=2|BF1|,则双曲线的离心率为$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将函数f(x)=sin2x的图象向右平移ϕ$({0<ϕ<\frac{π}{2}})$个单位后得到函数g(x)的图象,若函数g(x)在区间$[{0,\frac{π}{3}}]$上单调递增,且函数g(x)的最大负零点在区间$({-\frac{π}{3},-\frac{π}{12}})$内,则ϕ的取值范围是(  )
A.$[{\frac{π}{12},\frac{π}{4}}]$B.$[{\frac{π}{6},\frac{5π}{12}})$C.$[{\frac{π}{6},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=|($\sqrt{3}$-i)i|+i2017(i为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$α∈({0,\frac{π}{2}})$,且$2cos2α=cos({\frac{π}{4}-α})$,则sin2α的值为(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{7}{8}$D.$-\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某学校为了制定治理学校门口上学、方向期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从其中随机抽取的50份调查问卷,得到了如下的列联表.
同意限定区域停车不同意限定区域停车合计
18725
121325
合计302050
(Ⅰ)学校计划在同意限定区域停车的家长中,按照分层抽样的方法,随机抽取5人在上学、放学期间在学校门口参与维持秩序.在随机抽取的5人中,选出2人担任召集人,求至少有一名女性的概率?
(Ⅱ)已知在同意限定区域停车的12位女性家长中,有3位日常开车接送孩子.现从这12位女性家长中随机抽取3人参与维持秩序,记参与维持秩序的女性家长中,日常开车接送孩子的女性家长人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案