精英家教网 > 高中数学 > 题目详情
18.复数z=|($\sqrt{3}$-i)i|+i2017(i为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

分析 i4=1,可得i2017=(i4504•i=i.再利用复数的运算法则、模的计算公式、共轭复数的定义即可得出.

解答 解:∵i4=1,∴i2017=(i4504•i=i.
∴z=|($\sqrt{3}$-i)i|+i2017=|$\sqrt{3}$i+1|+i=$\sqrt{(\sqrt{3})^{2}+{1}^{2}}$+i=2+i,则复数z的共轭复数为2-i. 
故选:A.

点评 本题考查了复数的运算法则、模的计算公式、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点P(1,-2),则sin2α=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等比数列{an}中,若a2a5=2a3,a4与a6的等差中项为$\frac{5}{4}$,则a1=±16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BCE,BE⊥CE,AB=BE=EC=2,G,F分别是线段BE,DC的中点.
(I)求证:GF∥平面ADE;
(II)求GF与平面ABE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$z=|{({\sqrt{3}-i})i}|+{i^{2017}}$(i为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数x,y,a,b满足xy=2,a+2b=0,则(x-a)2+(y-b)2的最小值为$\frac{16}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.椭圆$C:\frac{x^2}{4}+\frac{y^2}{3}=1$与双曲线$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$有相同的焦点,且两曲线的离心率互为倒数,则双曲线渐近线的倾斜角的正弦值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC所在平面上有一点P,满足$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{BC}$,$\overrightarrow{PC}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足$\sqrt{3}ccos(2016π-B)-sin(2017π+C)=0$.
(1)求角B的大小;
(2)若动点D在△ABC的外接圆上,且点D,B不在AC的同一侧,AC=7,试求△ACD面积的最大值.

查看答案和解析>>

同步练习册答案