精英家教网 > 高中数学 > 题目详情
14.已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点P(1,-2),则sin2α=(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 利用任意角的三角函数的定义求得sinα、cosα的值,再利用二倍角公式求得sin2α的值.

解答 解:∵角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点P(1,-2),
∴r=|OP|=$\sqrt{5}$,sinα=$\frac{y}{r}$=$\frac{-2}{\sqrt{5}}$=-$\frac{2\sqrt{5}}{5}$,cosα=$\frac{x}{r}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,
则sin2α=2sinαcosα=2•(-$\frac{2\sqrt{5}}{5}$)•$\frac{\sqrt{5}}{5}$=-$\frac{4}{5}$,
故选:A.

点评 本题主要考查任意角的三角函数的定义,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知a>0,b>0,则“log2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}是等差数列且满足a1=1,a3=7,设Sn为数列{(-1)nan}的前n项和,则S2017为(  )
A.-3025B.-3024C.2017D.9703

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合M={x|y=$\sqrt{1-3x}$},集合N={x|x2-1<0},则M∩N=(  )
A.{x|-1<x≤$\frac{1}{3}$}B.{x|x≥$\frac{1}{3}$}C.{x|x≤$\frac{1}{3}$}D.{x|$\frac{1}{3}$≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知中心在原点的双曲线,其右焦点与圆x2-4x+y2+1=0的圆心重合,且渐近线与该圆相离,则双曲线离心率的取值范围是(  )
A.(1,$\frac{2\sqrt{3}}{3}$)B.(1,2)C.($\frac{2\sqrt{3}}{3}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点A(3$\sqrt{3}$,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t秒后,水斗旋转到P点,设P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<$\frac{π}{2}}$).则下列叙述错误的是(  )
A.$R=6,ω=\frac{π}{30},φ=-\frac{π}{6}$
B.当t∈[35,55]时,点P到x轴的距离的最大值为6
C.当t∈[10,25]时,函数y=f(t)单调递减
D.当t=20时,$|{PA}|=6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x+2|+|x-2|.
(1)求不等式f(x)≤6的解集A;
(2)若m,n∈A,试证:|${\frac{1}{3}$m-$\frac{1}{2}$n|≤$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an},若a12=4,a18=8,则a36为(  )
A.32B.64C.128D.256

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=|($\sqrt{3}$-i)i|+i2017(i为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

同步练习册答案