精英家教网 > 高中数学 > 题目详情
9.等比数列{an}中,若a2a5=2a3,a4与a6的等差中项为$\frac{5}{4}$,则a1=±16.

分析 设等比数列{an}的公比为q.由a2a5=2a3,可得${a}_{1}^{2}{q}^{5}$=2a1q2,化为:${a}_{1}{q}^{3}$=2=a4.由a4与a6的等差中项为$\frac{5}{4}$,可得a4+a6=2×$\frac{5}{4}$,即${a}_{4}(1+{q}^{2})$=$\frac{5}{2}$.代入解出即可得出.

解答 解:设等比数列{an}的公比为q.
∵a2a5=2a3
∴${a}_{1}^{2}{q}^{5}$=2a1q2,化为:${a}_{1}{q}^{3}$=2=a4
∵a4与a6的等差中项为$\frac{5}{4}$,∴a4+a6=2×$\frac{5}{4}$,
∴${a}_{4}(1+{q}^{2})$=$\frac{5}{2}$.
∴q2=$\frac{1}{4}$,解得q=$±\frac{1}{2}$.
则a1×$(±\frac{1}{8})$=2,解得a1=±16.
故答案为:±16.

点评 本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知数列{an}是等差数列且满足a1=1,a3=7,设Sn为数列{(-1)nan}的前n项和,则S2017为(  )
A.-3025B.-3024C.2017D.9703

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x+2|+|x-2|.
(1)求不等式f(x)≤6的解集A;
(2)若m,n∈A,试证:|${\frac{1}{3}$m-$\frac{1}{2}$n|≤$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等比数列{an},若a12=4,a18=8,则a36为(  )
A.32B.64C.128D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为AB中点,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)设ND中点为Q,$λ=\frac{1}{2}$,求证:MQ∥平面ABC;
(Ⅱ)若M到平面BCD的距离为$\frac{{3\sqrt{3}}}{4}$,求直线MC与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=(x-a)2+(ln x2-2a)2,其中x>0,a∈R,存在x0使得f(x0)≤b成立,则实数b的最小值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)左焦点F1的直线交双曲线左支于A,B两点,C是双曲线右支上一点,且A,C在x轴的异侧,若满足|OA|=|OF1|=|OC|,|CF1|=2|BF1|,则双曲线的离心率为$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=|($\sqrt{3}$-i)i|+i2017(i为虚数单位),则复数z的共轭复数为(  )
A.2-iB.2+iC.4-iD.4+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ex(x3-a)(a∈R)在(-3,0)单调递减,则a的范围是(  )
A.[0,+∞)B.[2,4]C.[4,+∞)D.(2,4)

查看答案和解析>>

同步练习册答案