精英家教网 > 高中数学 > 题目详情
15.已知$α∈({0,\frac{π}{2}})$,且$2cos2α=cos({\frac{π}{4}-α})$,则sin2α的值为(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{7}{8}$D.$-\frac{7}{8}$

分析 由条件利用两角和的正弦公式、二倍角公式求得cosα-sinα,或 cosα+sinα的值,由此求得sin2α的值.

解答 解:∵$α∈({0,\frac{π}{2}})$,且$2cos2α=cos({\frac{π}{4}-α})$,
∴2(cos2α-sin2α)=$\frac{\sqrt{2}}{2}$(cosα+sinα),
∴cosα-sinα=$\frac{\sqrt{2}}{4}$,或 cosα+sinα=0.
当cosα-sinα=$\frac{\sqrt{2}}{4}$,则有1-sin2α=$\frac{1}{8}$,sin2α=$\frac{7}{8}$;
∵α∈(0,$\frac{π}{2}$),
∴cosα+sinα=0不成立,
故选:C.

点评 本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数y=2xex的一个原函数为(  )
A.2xex(1+ln2)B.$\frac{{2}^{x}{e}^{x}}{(1+ln2)}$C.2exln2D.$\frac{2{e}^{x}}{ln2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BCE,BE⊥CE,AB=BE=EC=2,G,F分别是线段BE,DC的中点.
(I)求证:GF∥平面ADE;
(II)求GF与平面ABE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数x,y,a,b满足xy=2,a+2b=0,则(x-a)2+(y-b)2的最小值为$\frac{16}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.椭圆$C:\frac{x^2}{4}+\frac{y^2}{3}=1$与双曲线$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$有相同的焦点,且两曲线的离心率互为倒数,则双曲线渐近线的倾斜角的正弦值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ为何值时,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC所在平面上有一点P,满足$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{BC}$,$\overrightarrow{PC}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.18、甲、乙两位同学参加数学文化知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据求出甲、乙两位同学的平均值和方差,据此你认为选派哪位同学参加比赛较为合适?
(Ⅲ)若对加同学的正式比赛成绩进行预测,求比赛成绩高于80分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,椭圆与双曲线有公共焦点F1,F2,它们在第一象限的交点为A,且AF1⊥AF2
∠AF1F2=30°,则椭圆与双曲线的离心率的之积为(  )
A.2B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案