精英家教网 > 高中数学 > 题目详情
20.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ为何值时,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.

分析 (Ⅰ)取CD中点P,连接PM,PN,可得MP∥AC,则MP∥平面ABC.再由已知证明NP∥平面ABC.得到平面MNP∥平面ABC,则MN∥平面ABC;
(Ⅱ)取BC中点O,连OA,OE,可证AO⊥BC,OE⊥BC.分别以OE,OC,OA所在直线为x轴,y轴,z轴,建立空间直角坐标系.求出所用点的坐标,得到平面BMN的法向量,求出<$\overrightarrow{AN},\overrightarrow{n}$>的余弦值,即可得到直线AN与平面MNB所成角的正弦值.

解答 解:(Ⅰ)当$λ=\frac{1}{2}$,即M为AF中点时MN∥平面ABC.
事实上,取CD中点P,连接PM,PN,
∵AM=MF,CP=PD,∴MP∥AC,
∵AC?平面ABC,MP?平面ABC,∴MP∥平面ABC.
由CP∥PD,CN∥NE,得NP∥DE,
又DE∥BC,∴NP∥BC,
∵BC?平面ABC,NP?平面ABC,∴NP∥平面ABC.
∴平面MNP∥平面ABC,则MN∥平面ABC;
(Ⅱ)取BC中点O,连OA,OE,
∵AB=AC,OB=OC,∴AO⊥BC,
∵平面ABC⊥平面BCDE,且AO?平面ABC,∴AO⊥平面BCDE,
∵OC=$\frac{1}{2}BC=ED$,BC∥ED,∴OE∥CD,
又CD⊥BC,∴OE⊥BC.
分别以OE,OC,OA所在直线为x轴,y轴,z轴,建立空间直角坐标系.
则A(0,0,$\sqrt{3}$),C(0,1,0),E(1,0,0),$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{BA}=(0,\frac{1}{2},\frac{\sqrt{3}}{2})$,
∴F(1,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),M($\frac{1}{2}$,$\frac{1}{4}$,$\frac{3\sqrt{3}}{4}$),N($\frac{1}{2},\frac{1}{2},0$).
设$\overrightarrow{n}=(x,y,z)$为平面BMN的法向量,则
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BN}=\frac{x}{2}+\frac{3}{2}y=0}\\{\overrightarrow{n}•\overrightarrow{MN}=-\frac{y}{4}+\frac{3\sqrt{3}}{4}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}=(-9\sqrt{3},3\sqrt{3},1)$.
cos<$\overrightarrow{AN},\overrightarrow{n}$>=$\frac{-4\sqrt{6}}{\sqrt{1897}}$.
∴直线AN与平面MNB所成角的正弦值为$\frac{4\sqrt{6}}{\sqrt{1897}}$.

点评 本题考查直线与平面平行的判定,考查空间想象能力和思维能力,训练了利用空间向量求线面角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.|x|•(1-2x)>0的解集为(  )
A.(-∞,0)∪(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将函数f(x)=sin2x的图象向右平移ϕ$({0<ϕ<\frac{π}{2}})$个单位后得到函数g(x)的图象,若函数g(x)在区间$[{0,\frac{π}{3}}]$上单调递增,且函数g(x)的最大负零点在区间$({-\frac{π}{3},-\frac{π}{12}})$内,则ϕ的取值范围是(  )
A.$[{\frac{π}{12},\frac{π}{4}}]$B.$[{\frac{π}{6},\frac{5π}{12}})$C.$[{\frac{π}{6},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示的几何体是由棱台ABC-A1B1C1和棱锥D-AA1C1C拼接而成的组合体,其底面四边形ABCD是边长为2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求证:平面AB1C⊥平面BB1D;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$α∈({0,\frac{π}{2}})$,且$2cos2α=cos({\frac{π}{4}-α})$,则sin2α的值为(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{7}{8}$D.$-\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题p:?x>2,2x-3>0的否定是(  )
A.?x0>2,${2^{x_0}}-3≤0$B.?x≤2,2x-3>0C.?x>2,2x-3≤0D.?x0>2,${2^{x_0}}-3>0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x>1},B={y|y=x2,x∈R},则A∩B=(  )
A.[0,+∞)B.(1,+∞)C.[0,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P:?x>0,lnx<x,则¬P为(  )
A.?x≤0,lnx0>x0B.?x≤0,lnx0≥x0C.?x>0,lnx0≥x0D.?x>0,lnx0<x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$则z=2x+y的最大值是10.

查看答案和解析>>

同步练习册答案