精英家教网 > 高中数学 > 题目详情
10.|x|•(1-2x)>0的解集为(  )
A.(-∞,0)∪(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$)

分析 由不等式|x|(1-2x)>0可得 x≠0,且1-2x>0,由此求得x的范围.

解答 解:由不等式|x|(1-2x)>0可得 x≠0,且1-2x>0,求得x<$\frac{1}{2}$,且x≠0,
故选:A

点评 本题主要考查其它不等式的解法,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知直线$\sqrt{3}x-y-\sqrt{3}=0$与抛物线y2=4x交于A,B两点(A在x轴上方),与x轴交于F点,$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则λ-μ=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p1:若sinx≠0,则sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要条件是$\frac{x}{y}$=-1,则下列命题为真命题的是(  )
A.p1∧p2B.p1∨p2C.p1∧(¬p2D.(¬p1)∨p2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且过点$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)若直线l:y=kx+m(k>0)与E相交于P,Q两点,且OP与OQ(O为坐标原点)的斜率之和为2,求O到直线l距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=2xex的一个原函数为(  )
A.2xex(1+ln2)B.$\frac{{2}^{x}{e}^{x}}{(1+ln2)}$C.2exln2D.$\frac{2{e}^{x}}{ln2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC中,AB=2$\sqrt{3}$,AC+$\sqrt{3}$BC=6,D为AB的中点,当CD取最小值时,△ABC面积为$\frac{3\sqrt{23}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,P为双曲线右支上一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,若$∠P{F_1}{F_2}∈[{\frac{π}{12},\frac{π}{6}}]$,则双曲线离心率的取值范围是(  )
A.$[{2,\sqrt{3}+1}]$B.$[{2,2\sqrt{3}+1}]$C.$[{\sqrt{2},2}]$D.$[{\sqrt{2},\sqrt{3}+1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,直线x+2y=a与圆x2+y2=1相交于不同的两点A(x1,y1),B(x2,y2),O为坐标原点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=a,则实数a的值为(  )
A.$\frac{5-\sqrt{65}}{4}$B.$\frac{\sqrt{65}-5}{4}$C.$\frac{5-\sqrt{55}}{4}$D.$\frac{\sqrt{55}-5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ为何值时,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.

查看答案和解析>>

同步练习册答案