精英家教网 > 高中数学 > 题目详情
6.已知直线$\sqrt{3}x-y-\sqrt{3}=0$与抛物线y2=4x交于A,B两点(A在x轴上方),与x轴交于F点,$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则λ-μ=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

分析 直线过抛物线的焦点F(1,0),把直线方程代入抛物线的方程解得A、B 的坐标,由$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,得到3λ+$\frac{1}{3}$μ=1,2$\sqrt{3}$λ-$\frac{2\sqrt{3}}{3}$μ=0,解方程从而求得λ-μ的值.

解答 解:直线$\sqrt{3}x-y-\sqrt{3}=0$过抛物线的焦点F(1,0),
把直线方程代入抛物线的方程y2=4x,解得$\left\{\begin{array}{l}{x=3}\\{y=2\sqrt{3}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-\frac{2\sqrt{3}}{3}}\end{array}\right.$,
不妨设A(3,2$\sqrt{3}$)、B ($\frac{1}{3}$,-$\frac{2\sqrt{3}}{3}$).
∵$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,
∴(1,0)=(3λ,2$\sqrt{3}$λ)+($\frac{1}{3}$μ,-$\frac{2\sqrt{3}}{3}$μ)
=(3λ+$\frac{1}{3}$μ,2$\sqrt{3}$λ-$\frac{2\sqrt{3}}{3}$μ ).
∴3λ+$\frac{1}{3}$μ=1,2$\sqrt{3}$λ-$\frac{2\sqrt{3}}{3}$μ=0,
∴λ=$\frac{1}{4}$,μ=$\frac{3}{4}$,
则λ-μ=-$\frac{1}{2}$.
故选:B.

点评 本题考查两个向量坐标形式的运算,直线和抛物线的位置关系,由$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$得到λ、μ的方程是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.2017年3月14日,“ofo共享单车”终于来到芜湖,ofo共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的100名市民,并根据这100名市民对该项目满意程度的评分,绘制了如下频率分布直方图:
(I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;
(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.
(注:满意指数=$\frac{满意程度的平均得分}{100}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i为虚数单位,a∈R,$\frac{a-\sqrt{2}+i}{i}$为实数,则复数z=2a+$\sqrt{2}$i的模等于(  )
A.$\sqrt{6}$B.$\sqrt{10}$C.$\sqrt{11}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$a={({\frac{1}{2}})^{\frac{1}{3}}}$,$b={log_{\frac{1}{3}}}2$,$c=\frac{1}{sin1}$,则(  )
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=(x-2)n,其中$n=4\int_{-π}^{2π}{sin({x+π})dx}$,则f(x)的展开式中含x6的项的系数为(  )
A.-112B.-56C.112D.56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;
  A B 合计
 认可   
 不认可   
 合计   
(Ⅲ)若从此样本中的A城市和B城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自B城市的概率是多少?
附:参考数据:
(参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|1≤x≤2},B={x|x2-3x+2=0},则A∩B等于(  )
A.{x|1≤x≤2}B.(1,2)C.{1,2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.同时具有性质:“①最小正周期是π;②图象关于直线$x=\frac{π}{3}$对称;③在$[{-\frac{π}{6},\frac{π}{3}}]$上是增函数.”的一个函数为(  )
A.$y=sin({\frac{x}{2}+\frac{π}{6}})$B.$y=cos({\frac{x}{2}-\frac{π}{6}})$C.$y=cos({2x+\frac{π}{6}})$D.$y=sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.|x|•(1-2x)>0的解集为(  )
A.(-∞,0)∪(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案