精英家教网 > 高中数学 > 题目详情
17.已知i为虚数单位,a∈R,$\frac{a-\sqrt{2}+i}{i}$为实数,则复数z=2a+$\sqrt{2}$i的模等于(  )
A.$\sqrt{6}$B.$\sqrt{10}$C.$\sqrt{11}$D.$\sqrt{13}$

分析 利用复数代数形式的乘除运算化简,由虚部为0求得a值,再由复数模的计算公式求解.

解答 解:∵$\frac{a-\sqrt{2}+i}{i}=\frac{(a-\sqrt{2}+i)(-i)}{-{i}^{2}}=1-(a-\sqrt{2})i$为实数,
∴a-$\sqrt{2}$=0,即a=$\sqrt{2}$.
∴z=2a+$\sqrt{2}$i=$2\sqrt{2}+\sqrt{2}i$,
则|z|=$\sqrt{(2\sqrt{2})^{2}+(\sqrt{2})^{2}}=\sqrt{10}$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知(1+x)n的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为(  )
A.29B.210C.211D.212

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}的前n项和为Sn,且3Sn=4(an-1),n∈N*
(1)求数列{an}的通项公式an
(2)若数列{bn}满足a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果x0是函数f(x)的一个零点,且在这个零点两侧函数值异号,则称x0是函数f(x)的一个变号零点,已知函数f(x)=ax2+1+lnx在($\frac{1}{e}$,e)上有且仅有一个变号零点,则实数a的取值范围为(  )
A.[-$\frac{2}{{e}^{2}}$,0)B.[-$\frac{2}{{e}^{2}}$,0)∪{$-\frac{1}{2}$e}C.[-$\frac{e}{2}$,0)D.[-$\frac{2}{{e}^{2}}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点P(-1,1)作圆C:(x-t)2+(y-t)2=1(t∈R)的切线,切点分别为A,B,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义域R上的奇函数,且在区间[0,+∞)上单调递增,若$\frac{|f(lnx)-f(ln\frac{1}{x})|}{2}$<f(1),则x的取值范围为(  )
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面给出的命题中:
(1)已知函数f(a)=${∫}_{0}^{a}$cos xdx,则f($\frac{π}{2}$)=1;
(2)“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0互相垂直”的必要不充分条件;
(3)已知随机变量ξ服从正态分布N(0,δ2),且P(-2≤ξ≤0)=0.4,则P(ξ>2)=0.2;
(4)已知圆C1:x2+y2+2x=0,圆C2:x2+y2-1=0,则这两个圆恰有两条公切线.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线$\sqrt{3}x-y-\sqrt{3}=0$与抛物线y2=4x交于A,B两点(A在x轴上方),与x轴交于F点,$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则λ-μ=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p1:若sinx≠0,则sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要条件是$\frac{x}{y}$=-1,则下列命题为真命题的是(  )
A.p1∧p2B.p1∨p2C.p1∧(¬p2D.(¬p1)∨p2

查看答案和解析>>

同步练习册答案