精英家教网 > 高中数学 > 题目详情
1.设函数f(x)=(x-2)n,其中$n=4\int_{-π}^{2π}{sin({x+π})dx}$,则f(x)的展开式中含x6的项的系数为(  )
A.-112B.-56C.112D.56

分析 求定积分可得n的值,再利用二项展开式的通项公式求得f(x)的展开式中含x6的项的系数.

解答 解:∵$n=4\int_{-π}^{2π}{sin({x+π})dx}$=4${∫}_{-π}^{2π}(-sinx)dx$=4cosx${|}_{-π}^{2π}$=8,
∴f(x)=(x-2)n =(x-2)8
则f(x)的展开式的通项公式为Tr+1=${C}_{8}^{r}$•(-2)r•x8-r,令8-r=6,求得r=2,
可得展开式中含x6的项的系数为112,
故选:C.

点评 本题主要考查求定积分,二项式定理的应用,二项展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=$\left\{\begin{array}{l}-({x+1})•{e^x},x≤a\\-2x-1,x>a\end{array}$有最大值,则实数a的取值范围是(  )
A.$[{-\frac{1}{2}-\frac{1}{{2{e^2}}},+∞})$B.$[{-\frac{1}{{2{e^2}}},+∞})$C.[-2,+∞)D.$({-2,-\frac{1}{2}-\frac{1}{{2{e^2}}}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点P(-1,1)作圆C:(x-t)2+(y-t)2=1(t∈R)的切线,切点分别为A,B,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面给出的命题中:
(1)已知函数f(a)=${∫}_{0}^{a}$cos xdx,则f($\frac{π}{2}$)=1;
(2)“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0互相垂直”的必要不充分条件;
(3)已知随机变量ξ服从正态分布N(0,δ2),且P(-2≤ξ≤0)=0.4,则P(ξ>2)=0.2;
(4)已知圆C1:x2+y2+2x=0,圆C2:x2+y2-1=0,则这两个圆恰有两条公切线.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某地铁1号线上,任意一站到M站的票价不超过5元,现从那些只乘坐1号线地铁,且在M站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(I)如果从那些只乘坐1号线地铁,且在M站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;
(II)已知选出的120人中有6名学生,且这6人乘坐地铁的票价情形恰好与按票价从这120中分层抽样所选的结果相同,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线$\sqrt{3}x-y-\sqrt{3}=0$与抛物线y2=4x交于A,B两点(A在x轴上方),与x轴交于F点,$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则λ-μ=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定直线l:y=x+3,定点A(2,1),以坐标轴为对称轴的椭圆C过点A且与l相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值和方差(不要求计算出具体值,得出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成下列2×2列联表,并据此样本分析你是否有95%的把握认为城市拥堵与认可共享单车有关.
  认可 不认可 合计
 A城市   
 B城市   
 合计   
P(Χ2≥k)0.050.010
k3.8416.635
(参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)
(Ⅲ)在A和B两个城市满意度在90分以上的用户中任取2户,求来自不同城市的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=2xex的一个原函数为(  )
A.2xex(1+ln2)B.$\frac{{2}^{x}{e}^{x}}{(1+ln2)}$C.2exln2D.$\frac{2{e}^{x}}{ln2}$

查看答案和解析>>

同步练习册答案