精英家教网 > 高中数学 > 题目详情
10.已知实数x,y满足$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$则z=2x+y的最大值是10.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x+y≤6\\ x-y≤2\\ x≥0\\ y≥0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y=2}\\{x+y=6}\end{array}\right.$,解得A(4,2),
化目标函数z=2x+y为y=-2x+z,由图可知,当直线y=-2x+z过A时,
直线在y轴上的截距最大,z有最大值为10.
故答案为:10.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ为何值时,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={0,2,4},B={x|3x-x2≥0},则集合A∩B的子集个数为(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}CD$=1,如图2,将△ABD沿BD折起来,使平面ABD⊥平面BCD,设E为AD的中点,F为AC上一点,O为BD的中点.
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)若AF=2FC,求三棱锥A-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,椭圆与双曲线有公共焦点F1,F2,它们在第一象限的交点为A,且AF1⊥AF2
∠AF1F2=30°,则椭圆与双曲线的离心率的之积为(  )
A.2B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设点M是x轴上的一个定点,其横坐标为a(a∈R),已知当a=1时,动圆N过点M且与直线x=-1相切,记动圆N的圆心N的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)当a>2时,若直线l与曲线C相切于点P(x0,y0)(y0>0),且l与以定点M为圆心的动圆M也相切,当动圆M的面积最小时,证明:M、P两点的横坐标之差为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80)[80,90),[90,100]的分组作出频率分布直方图如同1,并作出样本分数的茎叶图如图2(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中的x,y的值;
(Ⅱ)分数在[90,100]的学生设为一等奖,获奖学金500元;分数在[80,90)的学生设为二等奖,获奖学金200元.已知在样本中,获一、二等奖的学生中各有一名男生,则从剩下的女生中任取三人,求奖学金之和大于600的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过抛物线y2=2x焦点的直线交抛物线于A,B两点,若AB的中点M到该抛物线准线的距离为5,则线段AB的长度为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,∠BAC的平分线交BC边于D,若AB=2,AC=1,则△ABD面积的最大值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步练习册答案