精英家教网 > 高中数学 > 题目详情
12.已知集合A={x|x>1},B={y|y=x2,x∈R},则A∩B=(  )
A.[0,+∞)B.(1,+∞)C.[0,1)D.(0,+∞)

分析 运用二次函数的性质,化简集合B,再根据集合交集的定义,即可得到所求.

解答 解:集合A={x|x>1},
B={y|y=x2,x∈R}={y|y≥0},
则A∩B={m|m>1}=(1,+∞).
故选:B.

点评 本题考查集合的交集的运算,注意运用二次函数的性质和交集的定义,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,P为双曲线右支上一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,若$∠P{F_1}{F_2}∈[{\frac{π}{12},\frac{π}{6}}]$,则双曲线离心率的取值范围是(  )
A.$[{2,\sqrt{3}+1}]$B.$[{2,2\sqrt{3}+1}]$C.$[{\sqrt{2},2}]$D.$[{\sqrt{2},\sqrt{3}+1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数x,y,a,b满足xy=2,a+2b=0,则(x-a)2+(y-b)2的最小值为$\frac{16}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,$\overrightarrow{AM}=λ\overrightarrow{AF}({λ∈R,λ>0})$.
(Ⅰ)λ为何值时,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC所在平面上有一点P,满足$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{BC}$,$\overrightarrow{PC}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设m、n是两条不同的直线,α、β是两个不同的平面,则m⊥β的一个充分条件是(  )
A.α⊥β且m?αB.m∥n且n⊥βC.α⊥β且m∥αD.m⊥n且n∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.18、甲、乙两位同学参加数学文化知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据求出甲、乙两位同学的平均值和方差,据此你认为选派哪位同学参加比赛较为合适?
(Ⅲ)若对加同学的正式比赛成绩进行预测,求比赛成绩高于80分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={0,2,4},B={x|3x-x2≥0},则集合A∩B的子集个数为(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80)[80,90),[90,100]的分组作出频率分布直方图如同1,并作出样本分数的茎叶图如图2(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中的x,y的值;
(Ⅱ)分数在[90,100]的学生设为一等奖,获奖学金500元;分数在[80,90)的学生设为二等奖,获奖学金200元.已知在样本中,获一、二等奖的学生中各有一名男生,则从剩下的女生中任取三人,求奖学金之和大于600的概率.

查看答案和解析>>

同步练习册答案