精英家教网 > 高中数学 > 题目详情
17.为选拔选手参加“中国汉字听写大全”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,每次抽取1人,求在第1次抽取的成绩低于90分的前提下,第2次抽取的成绩仍低于90分的概率.

分析 (Ⅰ)由样本容量和频数频率的关系易得答案;
(Ⅱ)由题意可知,分数在[80,90)内的学生有:0.010×10×50=5人,分数在[90,100)内的学生有2人,利用条件概率公式可得结论.

解答 解:(Ⅰ)由题意可知,样本容量$n=\frac{8}{0.016×10}=50$,$y=\frac{2}{50×10}=0.004$,
x=0.100-0.004-0.010-0.016-0.040=0.030.
(Ⅱ)由题意可知,分数在[80,90)内的学生有:0.010×10×50=5人,分数在[90,100)内的学生有2人;
设A={第1次抽取的成绩低于90分},B={第2次抽取的成绩仍低于90分},
则$P(A)=\frac{5}{7}$,$P({AB})=\frac{5×4}{7×6}=\frac{10}{21}$,
∴$P({B|A})=\frac{{P({AB})}}{P(A)}=\frac{2}{3}$.

点评 本题考查求条件概率,涉及频率分布直方图,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知复数(1+i)z=1-i(i是虚数单位),则z的共轭复数的虚部是(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ln(1+x)-ln(1-x),给出以下四个命题:
①?x∈(-1,1),有f(-x)=-f(x);
②?x1,x2∈(-1,1)且x1≠x2,有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$;
③?x1,x2∈(0,1),有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2}$;
④?x∈(-1,1),|f(x)|≥2|x|.
其中所有真命题的序号是(  )
A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}是等差数列且满足a1=1,a3=7,设Sn为数列{(-1)nan}的前n项和,则S2017为(  )
A.-3025B.-3024C.2017D.9703

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{\sqrt{2}}}{2}$,且与直线l:y=x+3相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆上点A(2,1)作椭圆的弦AP,AQ,若AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合M={x|y=$\sqrt{1-3x}$},集合N={x|x2-1<0},则M∩N=(  )
A.{x|-1<x≤$\frac{1}{3}$}B.{x|x≥$\frac{1}{3}$}C.{x|x≤$\frac{1}{3}$}D.{x|$\frac{1}{3}$≤x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知中心在原点的双曲线,其右焦点与圆x2-4x+y2+1=0的圆心重合,且渐近线与该圆相离,则双曲线离心率的取值范围是(  )
A.(1,$\frac{2\sqrt{3}}{3}$)B.(1,2)C.($\frac{2\sqrt{3}}{3}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x+2|+|x-2|.
(1)求不等式f(x)≤6的解集A;
(2)若m,n∈A,试证:|${\frac{1}{3}$m-$\frac{1}{2}$n|≤$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)左焦点F1的直线交双曲线左支于A,B两点,C是双曲线右支上一点,且A,C在x轴的异侧,若满足|OA|=|OF1|=|OC|,|CF1|=2|BF1|,则双曲线的离心率为$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

同步练习册答案