精英家教网 > 高中数学 > 题目详情

已知函数f(x)=xlnx,g(x)=x-1.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意正实数x,不等式f(x)≥kg(x)恒成立,求实数k的值;
(Ⅲ)求证:2nlnn!≥(n-1)2(n∈N*).(其中n!=1×2×3×…×(n-1)×n)

解:(I)由题意可知:定义域:(0,+∞),f'(x)=lnx+1,令f'(x)=0,得x=,(1分)
则当x∈(0,)时,f′(x)<0,f(x)单调递减;(2分)
当x∈(,+∞)时,f′(x)>0,f(x)单调递增(4分)
(II)令h(x)=xlnx-kx+k,则h′(x)=1+lnx-k,
∴h(x)在(0,ek-1)上是减函数,在(ek-1,+∞)上是增函数,
∴h(x)≥h(ek-1)=k-ek-1
由题意k-ek-1≥0,
令t(k)=k-ek-1,则t′(k)=1-ek-1
∴t(k)在(0,1)上是增函数,在(1,+∞)上是减函数,
∴t(k)≤t(1)=0,
∴k-ek-1≤0,
∴k-ek-1=0,∴k=1.
(III)由(II)得,?x>1,xlnx>x-1恒成立,∴lnx>=1-
令x=k2(k∈N*,k≥2),
取k=2,3,…,n-1,n.并累加得:
∴2nlnn!>(n-1)2
又当n=1时,2nlnn!=(n-1)2
∴2nlnn!≥(n-1)2(n∈N*).
分析:(I)利用导数求出函数的极值,然后求f(x)的单调区间;
(II)令h(x)=xlnx-kx+k,利用导数研究其单调性得h(x)≥h(ek-1)=k-ek-1,从而有k-ek-1≥0,再令t(k)=k-ek-1,利用导数研究其单调性得k-ek-1≤0,利用两边夹原理即可得出k-ek-1=0,从而求出k的值;
(III)利用?x>1,xlnx>x-1恒成立,结合取k=2,3,…,n-1,n.并累加得即可证明2nlnn!≥(n-1)2
点评:本题是中档题,考查函数的导数的应用,不等式的综合应用,考查计算能力,转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案