精英家教网 > 高中数学 > 题目详情
设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x}.若A={1,2},且f(0)=2,求M和m的值.
分析:由f(0)=2得到c的值,集合A的方程可变为f(x)-x=0,因为A={1,2},得到1,2是方程的解,根据韦达定理即可求出a和b,把a、b、c代入得到f(x)的解析式,在[-2,2]上根据函数的图象可知m和M的值.
解答:解:由f(0)=2可知c=2,
∵A={1,2},
∴1,2是方程ax2+(b-1)x+c=0的两实根,
1+2=-
b-1
a
1×2=
c
a
,解得a=1,b=-2,
∴f(x)=x2-2x+2=(x-1)2+1,
因为x∈[-2,2],根据函数图象可知,
当x=1时,f(x)min=f(1)=1,即m=1,
当x=-2时,f(x)max=f(-2)=10,即M=10,
∴M=10,m=1.
点评:本题主要查了学生灵活运用韦达定理解决实际问题,掌握利用数形结合法解决数学问题,会求一个闭区间上二次函数的最值.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c满足f(-1)=0,对于任意的实数x都有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求证:a>0,c>0;
(3)当x∈(-1,1)时,函数g(x)=f(x)-mx,m∈R是单调的,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2
1
a
,且函数f(x)的图象关于直线x=x0对称,则有(  )
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足:当x=1时,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在实数m,n,使x∈[m,n]时,函数的值域也是[m,n]?若存在,则求出这样的实数m,n;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+x+a(a>0),若f(m)<0,则有(  )

查看答案和解析>>

同步练习册答案