精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的长轴长为6,离心率为.

(1)求椭圆C的标准方程;

(2)设椭圆C的左右焦点分别为,左右顶点分别为AB,点MN为椭圆C上位于x轴上方的两点,且,直线的斜率为,记直线AMBN的斜率分别为,试证明:的值为定值.

【答案】(1)(2)证明见详解.

【解析】

1)根据长轴及离心率信息,求解,写出椭圆方程即可;

2)由题可知直线的方程,联立方程组求得点坐标,根据对称性求得N点坐标,再计算斜率,即可证明.

(1)由题意,可得

联立解得

故椭圆的标准方程为.

(2)证明:如图,由(1)可知

据题意,的方程为.

记直线与椭圆的另一个交点为

,根据对称性可得

联立消去,得

,∴

的值为定值0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:

态度

调查人群

应该取消

应该保留

无所谓

在校学生

2100人

120人

y人

社会人士

500人

x人

z人

已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.

(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?

(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,.为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°PA⊥面ABCD,且PA=3F在棱PA上,且AF=1E在棱PD上.

(Ⅰ)若CE∥面BDF,求PEED的值;

(Ⅱ)求二面角B-DF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点,则下列判断:①;②;③;④有极小值点,且.则正确判断的个数是( )

A. 4个B. 3个C. 2个D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“工资条里显红利,个税新政入民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.某从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁-35岁(2009年-2018年)之间各年的月平均收入(单位:千元)的散点图:(注:年龄代码1-10分别对应年龄26-35岁)

(1)由散点图知,可用回归模型拟合的关系,试根据有关数据建立关于的回归方程;

(2)如果该从业者在个税新政下的专项附加扣除为3000元/月,试利用(1)的结果,将月平均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.

附注:参考数据:

,其中:取.

参考公式:回归方程中斜率和截距的最小二乘估计分别为.

新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:

旧个税税率表(个税起征点3500元)

新个税税率表(个税起征点5000元)

缴税

级数

每月应纳税所得额(含税)收入个税起征点

税率

每月应纳税所得额(含税)收入个税起征点专项附加扣除

税率

1

不超过1500元的都分

3

不超过3000元的都分

3

2

超过1500元至4500元的部分

10

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

超过12000元至25000元的部分

20

4

超过9000元至35000元的部分

25

超过25000元至35000元的部分

25

5

超过35000元至55000元的部分

30

超过35000元至55000元的部分

30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线y=a分别与直线y=2x-3,曲线y=ex-xx≥0)交于点AB,则|AB|的最小值为(  )

A. B. C. eD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体AMDCNB是由两个完全相同的四棱锥构成的几何体,这两个四棱锥的底面ABCD为正方形,,平面平面ABCD.

(1)证明:平面平面MDC.

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的直线被曲线截得的弦长为2,则直线的方程为______

查看答案和解析>>

同步练习册答案