精英家教网 > 高中数学 > 题目详情
10.函数y=x3+x在点A(1,2)的切线方程为(  )
A.4x-y+2=0B.4x-y-2=0C.4x+y+2=0D.4x+y-2=0

分析 求出导函数,将x=1代入求出切线的斜率,利用点斜式求出直线的方程.

解答 解:y′=3x2+1
令x=1得切线斜率4
所以切线方程为y-2=4(x-1)
即4x-y-2=0
故选:B.

点评 本题考查导数的几何意义:在切点处的导数值为切线的斜率、考查直线的点斜式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)=x2+ax+a(x∈R),g(x)=ex,h(x)=$\frac{f(x)}{g(x)}$.
(1)当a=1时,求h(x)的单调区间;
(2)求h(x)在x∈[1,+∞)是递减的,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数Z 的共轭复数是$\overline z$,且满足$\frac{\overline z}{1-i}$=i(其中i为虚数单位),则z等于(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若某空间几何体的三视图如图所示,则该几何体的体积是(  )
A.20-2πB.40-$\frac{2}{3}$πC.20-$\frac{2}{3}$πD.20-$\frac{4}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\left\{{\begin{array}{l}{\frac{1}{{f({x+1})}}-1,-1<x<0}\\{x,0≤x<1}\end{array}}$,若方程f(x)-4ax=a(a≠0)有唯一解,则实数a的取值范围是(  )
A.$[{\frac{1}{3},+∞})$B.$[{\frac{1}{5},+∞})$C.$\left\{1\right\}∪[{\frac{1}{3},+∞})$D.$\left\{{-1}\right\}∪[{\frac{1}{5},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=x2-mlnx-nx.
(1)当m=-1时,函数f(x)在定义域内是增函数,求实数n的取值范围;
(2)当m>0,n=0时,关于x的方程f(x)=mx有唯一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.奇函数f(x)的定义域为(-1,1),且在(-1,1)上是增函数,若f(1-a)+f(1-2a)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若方程x2+(m-1)x+1=0在(0,2)区间上有2个不同的解,则实数m的取值范围为(-$\frac{3}{2}$,-1).

查看答案和解析>>

同步练习册答案