精英家教网 > 高中数学 > 题目详情
1.若复数Z 的共轭复数是$\overline z$,且满足$\frac{\overline z}{1-i}$=i(其中i为虚数单位),则z等于(  )
A.1-iB.1+iC.-1-iD.-1+i

分析 直接利用复数代数形式的乘法运算化简,再由共轭复数的概念得答案.

解答 解:由$\frac{\overline z}{1-i}$=i,得$\overline{z}=i(1-i)=1+i$,
∴z=1-i.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上有一个动点P,求点P到直线l1和直线l2的距离之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.集合A={x|-x2-ax+a2-1=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},求当a为何值时,A∩B≠∅与A∩C=∅同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线y2=4x的准线方程为x=-1,经过此抛物线的焦点和点M(3,1),且与准线相切的圆共有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“x>2”是“x2>4”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.观察下列等式
$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i=cos$\frac{π}{3}$+isin$\frac{π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=cos$\frac{2π}{3}$+isin$\frac{2π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)3=cosπ+isinπ,
($\frac{1}{2}$+$\frac{\sqrt{4}}{2}$i)4=cos$\frac{4π}{3}$+isin $\frac{4π}{3}$,

照此规律,可以推测对于任意的n∈N*,($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)n=cos$\frac{n}{3}$π+isin$\frac{n}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在公比大于1的等比数列{an}中,a3a7=8,a2+a8=9,则a12=(  )
A.32B.24C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=x3+x在点A(1,2)的切线方程为(  )
A.4x-y+2=0B.4x-y-2=0C.4x+y+2=0D.4x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f($\sqrt{x}$-1)=x+a.
(1)求函数f(x)的解析式及定义域;
(2)若f(x)>0对任意的x≥0恒成立,求a取值范围.

查看答案和解析>>

同步练习册答案