分析 根据抛物线的方程求得焦点坐标和准线的方程,设出所求圆的圆心,表示出半径,则圆的方程可得,把M,F点的坐标代入整理求得b2+2b-9=0,即可得出结论.
解答 解:抛物线y2=4x的焦参数p=2,所以F(1,0),准线l:x=-1,即x+1=0,
设经过点M(3,1)、F(1,0),且与直线l相切的圆的圆心为Q(a,b),
则半径为Q到l的距离为即1+a,
∴所以圆的方程为(x-a)2+(y-b)2=(1+a)2;
将M、F的坐标代入,(3-a)2+(1-b)2=(1+a)2①,
(1-a)2+b2=(1+a)2②,
由①②得:4a+2b-9=0,③
b2=4a,④
由③④得:b2+2b-9=0,
解得△>0.
故圆的个数为2个.
故答案为:x=-1,2.
点评 本题主要考查了抛物线的简单性质和圆的标准方程.考查了运用待定系数法求圆的方程以及圆与圆锥曲线的位置关系,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | $\frac{1}{3}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1≤x≤3 | B. | x≤-1 | C. | x≥3 | D. | x<-1或x>3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com