精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|2x-1|+ax-1(a∈R).
(1)当a=1时,解不等式f(x)≥0;
(2)若不等式f(a)+f(-a)≤0恒成立,求实数a的取值范围.

分析 (1)通过讨论x的范围,得到关于x的不等式组,解出即可;
(2)问题转化为|2a-1|+|2a+1|≤2恒成立,通过讨论a的范围,得到关于a的不等式组,解出即可.

解答 解:(1)a=1时,f(x)=|2x-1|+x-1,
由不等式f(x)≥0可化为:
$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x-1+x-1≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x<\frac{1}{2}}\\{1-2x+x-1≥0}\end{array}\right.$,
解得:x≥$\frac{2}{3}$或x≤0,
故不等式的解集是(-∞,0]∪[$\frac{2}{3}$,+∞);
(2)若不等式f(a)+f(-a)≤0恒成立,
即|2a-1|+a2-1+|2a+1|-a2-1≤0恒成立,
即|2a-1|+|2a+1|≤2恒成立,
即$\left\{\begin{array}{l}{a≥\frac{1}{2}}\\{2a-1+2a+1≤2}\end{array}\right.$或$\left\{\begin{array}{l}{-\frac{1}{2}<a<\frac{1}{2}}\\{1-2a+2a+1≤2}\end{array}\right.$或$\left\{\begin{array}{l}{a≤-\frac{1}{2}}\\{1-2a-2a-1≤2}\end{array}\right.$,
解得:-$\frac{1}{2}$≤a≤$\frac{1}{2}$.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为偶数且点数之差的绝对值为2},则P(A)=(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(m,n-1)与$\overrightarrow{b}$=(2,-1)平行,则$\sqrt{{m}^{2}+{n}^{2}}$的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某公司对新招聘的员工张某进行综合能力测试,共设置了A、B、C三个测试项目.假定张某通过项目A的概率为$\frac{1}{2}$,通过项目B、C概率均为a(0<a<1),且这三个测试项目能否通过相互独立.
(Ⅰ)用随机变量X表示张某在测试中通过的项目个数,当$a=\frac{1}{3}$时,求X的概率分布和数学期望;
(Ⅱ)若张某通过一个项目的概率最大,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x,y∈R+,$\frac{1}{x+1}+\frac{1}{y+1}=\frac{1}{2}$,则xy的最小值为(  )
A.1B.9C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设不等式组$\left\{\begin{array}{l}{3x+y-10≥0}\\{x+3y-6≤0}\end{array}\right.$,表示的平面区域为D,若函数y=logax(a>1)的图象上存在区域D上的点,则实数a的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在半径为2cm的圆中,有一条弧长为$\frac{π}{3}$ cm,它所对的圆心角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.工商局对超市某种食品抽查,这种食品每箱装有6袋,经检测,某箱中每袋的重量(单位:克)如以下茎叶图所示.则这箱食品一袋的平均重量和重量的中位数分别为(  )
A.249,248B.249,249C.248,249D.248,249

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,b=5,c=7,则△ABC的面积为$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

同步练习册答案