精英家教网 > 高中数学 > 题目详情
18.设不等式组$\left\{\begin{array}{l}{3x+y-10≥0}\\{x+3y-6≤0}\end{array}\right.$,表示的平面区域为D,若函数y=logax(a>1)的图象上存在区域D上的点,则实数a的取值范围是[3,+∞).

分析 如图所示,不等式组$\left\{\begin{array}{l}{3x+y-10≥0}\\{x+3y-6≤0}\end{array}\right.$,表示的平面区域为D,联立$\left\{\begin{array}{l}{3x+y-10=0}\\{x+3y-6=0}\end{array}\right.$,解得A(3,1).根据函数y=logax(a>1)的图象上存在区域D上的点,可得经过点A时,a取得最小值,可得a.

解答 解:如图所示,不等式组$\left\{\begin{array}{l}{3x+y-10≥0}\\{x+3y-6≤0}\end{array}\right.$,表示的平面区域为D,
联立$\left\{\begin{array}{l}{3x+y-10=0}\\{x+3y-6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,∴A(3,1).
∵函数y=logax(a>1)的图象上存在区域D上的点,
∴经过点A时,a取得最小值,1=loga3,解得a=3.
则实数a的取值范围是[3,+∞).
故答案为:[3,+∞).

点评 本题考查了线性规划、对数函数的单调性、不等式与方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.向量$\overrightarrow a=(m,n)$,$\overrightarrow b=(-1,2)$,若向量$\overrightarrow a$,$\overrightarrow b$共线,且$|\overrightarrow a|=2|\overrightarrow b|$,则mn的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=-$\frac{1}{x}$,在区间(0,+∞)内讨论下列问题:
(1)当x1=1及x2=3时,比较f(x1)与f(x2)的大小;
(2)任取x1,x2∈(0,+∞),且x1<x2,比较f(x1)与f(x2)的大小;
(3)由(2)所得的结论判断函数f(x)=-$\frac{1}{x}$在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正方形ABCD的边长为1,则|$\overrightarrow{AB}$-$\overrightarrow{CB}$|=(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x-1|+ax-1(a∈R).
(1)当a=1时,解不等式f(x)≥0;
(2)若不等式f(a)+f(-a)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.高三某班一学习小组的A、B、C、D四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在画画.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|2x+2|-|2x-2|,x∈R.
(1)求不等式f(x)≤3的解集;
(2)若方程$\frac{f(x)}{2}+a=x$有三个实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.实数x,y满足$|x+1|≤y≤-\frac{1}{2}x+1$时,目标函数z=mx+y的最大值等于5,则实数m的值为(  )
A.-1B.$-\frac{1}{2}$C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,边AB,AC所在直线的方程分别为2x-y+7=0,x-y+6=0,已知M(1,6)是BC边上一点.
(1)若AM为BC边上的高,求直线BC的方程;
(2)若AM为BC边的中线,求△ABC的面积.

查看答案和解析>>

同步练习册答案