精英家教网 > 高中数学 > 题目详情
14.求函数y=lnx+ax的单调区间.

分析 判断参数a的取值,求函数的导数,利用函数单调性和导数之间的关系进行求解即可.

解答 解:令y=f(x),函数的定义域为(0,+∞),
若a=0,f(x)=lnx,此时函数单调递增,递增区间为(0,+∞),
若a≠0,则函数的导数f′(x)=a+$\frac{1}{x}$,
若a>0,则f′(x)=a+$\frac{1}{x}$>0,此时函数单调递增,递增区间为(0,+∞),
若a<0,由f′(x)=a+$\frac{1}{x}$<0得$\frac{1}{x}$<-a,则x>-$\frac{1}{a}$,此时函数单调递减,递减区间为(-$\frac{1}{a}$,+∞),
由f′(x)=a+$\frac{1}{x}$>0得$\frac{1}{x}$>-a,则0<x<-$\frac{1}{a}$,此时函数单调递增,递增区间为(0,-$\frac{1}{a}$),
综上若a≥0,则函数的单调递增区间为(0,+∞),
若a<0,则函数的单调递增区间为(0,-$\frac{1}{a}$),单调递减区间为(-$\frac{1}{a}$,+∞).

点评 本题主要考查函数单调性和单调区间的求解和判断,利用函数单调性的性质以及函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若函数y=f(x+1)的定义域是[-4,6],则f(x+2)的定义域是(  )
A.[0,$\frac{5}{2}$]B.[-1,4]C.[-5,5]D.[-3,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.$(t为参数),圆C的方程是x2+y2-2x-4y=0,以原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l与圆C的极坐标方程;
(2)设直线l与圆C的两个交点为M,N,求M,N两点的极坐标(ρ≥0,0≤θ<2π),以及△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在直角坐标系xOy中,曲线C的方程是(x-2)2+(y-l)2=4,直线l经过点P(3,$\sqrt{3}$),倾斜角为$\frac{π}{6}$,以O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)写出曲线C的极坐标方程和直线l的参数方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求|OA|•|OB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=(x2+mx)ex(e为自然对数的底)的单调递减区间是[-$\frac{3}{2}$,1],则实数m=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过点P(-3,0)且倾斜角为30°的直线和曲线ρ2cos2θ=4相交于A、B两点.求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log${\;}_{\frac{1}{3}}$($\frac{1-ax}{x-1}$)满足f(-2)=1,其中a为实常数.
(1)求a的值,并判定函数f(x)的奇偶性;
(2)若不等式f(x)>($\frac{1}{2}$)x+t在x∈[2,3]上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在△ABC中,∠BAC的平分线交BC于D,交△ABC的外接圆于E,延长AC交△DCE的外接圆于F
(1)求证:BD=DF;
(2)若AD=3,AE=5,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设矩阵A=$[\begin{array}{l}{1}&{-2}\\{3}&{-7}\end{array}]$的逆矩阵为A-1,矩阵B满足AB=$[\begin{array}{l}{3}\\{1}\end{array}]$,求 A-1,B.

查看答案和解析>>

同步练习册答案