精英家教网 > 高中数学 > 题目详情
1.若函数y=f(x+1)的定义域是[-4,6],则f(x+2)的定义域是(  )
A.[0,$\frac{5}{2}$]B.[-1,4]C.[-5,5]D.[-3,7]

分析 由函数f(x+1)的定义域是[-4,6],求出函数f(x)的定义域,再由x+2在函数f(x)的定义域内求解x的取值集合得到函数y=f(x+2)的定义域.

解答 解:由函数f(x+1)的定义域是[-4,6],
∴-4≤x≤6,得-3≤x+1≤7,
即函数f(x)的定义域是[-3,7],
再由-3≤x+2≤7,得:-5≤x≤5,
∴函数y=f(x+2)的定义域是[-5,5],
故选:C.

点评 本题考查了复合函数定义域的求法,给出函数f[g(x)]的定义域[a,b],求函数f(x)的定义域,就是求x∈[a,b]内的g(x)的值域;给出函数f(x)的定义域为[a,b],求f[g(x)]的定义域,只需由a≤g(x)≤b,求解x的取值集合即可,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,将一副三角板拼接,使他们有公共边BC,且使这两个三角形所在的平面互相垂直,∠BAC=∠CBD=90°,AB=AC,∠BCD=30°,BC=6.
(Ⅰ)证明:DB⊥AB;
(Ⅱ)求点C到平面ADB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离等于$\frac{π}{2}$.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,a=$\sqrt{5}$,f(${\frac{C}{2}$+$\frac{π}{6}}$)=$\frac{{2\sqrt{5}}}{3}$,△ABC的面积为$2\sqrt{5}$,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果正实数x,y满足xy+2x+y=4,则3x+2y的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列有关命题的叙述错误的是(  )
A.对于命题p:?x∈R,x2+x+1<0,则¬p:?x∈R,x2+x+1≥0
B.若p∧q为假命题,则p,q均为假命题
C.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
D.“x>2”是“x2-3x+2>0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,椎体P-ABCD中,ABCD为边长为1的菱形,且∠DAB=60°,PA=PD=$\sqrt{2}$,PB=2,E、F、G分别为BC、PC、AD中点.
(1)求证:平面PGB∥平面DEF;
(2)证明:AD⊥平面PGB;
(文)(3)求直线PC与平面PGB所成角的正弦值;
(理)(3)求二面角P-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,已知2$\sqrt{3}$absinC=a2+b2-c2,则C的度数为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn=2n,那么数列{an}的通项公式an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=lnx+ax的单调区间.

查看答案和解析>>

同步练习册答案