12£®ÒÑÖªº¯Êýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$£¬ÆäÖÐ$\overrightarrow{m}$=£¨sin¦Øx+cos¦Øx£¬$\sqrt{3}$cos¦Øx£©£¬$\overrightarrow{n}$=£¨cos¦Øx-sin¦Øx£¬2sin¦Øx£©£¬ÆäÖЦأ¾0£¬Èôf£¨x£©ÏàÁÚÁ½¶Ô³ÆÖá¼äµÄ¾àÀëµÈÓÚ$\frac{¦Ð}{2}$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬a¡¢b¡¢c·Ö±ðÊǽÇA¡¢B¡¢CµÄ¶Ô±ß£¬a=$\sqrt{5}$£¬f£¨${\frac{C}{2}$+$\frac{¦Ð}{6}}$£©=$\frac{{2\sqrt{5}}}{3}$£¬¡÷ABCµÄÃæ»ýΪ$2\sqrt{5}$£¬Çó±ßcµÄÖµ£®

·ÖÎö £¨¢ñ£©Ê×ÏÈ£¬½áºÏÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬»¯¼òº¯Êýf£¨x£©µÄ½âÎöʽ£¬È»ºó£¬½áºÏÖÜÆÚ¹«Ê½£¬È·¶¨¦ØµÄÖµ£¬´Ó¶ø¿ÉÇóº¯Êýf£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©¸ù¾Ý£¨¢ñ£©¼°ÒÑÖª£¬ÏÈÈ·¶¨cosCµÄÖµ£¬ÀûÓÃͬ½ÇÈý½Çº¯Êý»ù±¾¹ØÏµÊ½¿ÉÇósinC£¬È»ºó½áºÏÈý½ÇÐÎÃæ»ý¹«Ê½¿ÉÇób£¬ÀûÓÃÓàÏÒ¶¨Àí¼´¿ÉµÃ½âcµÄ³¤£®

½â´ð ½â£º£¨¢ñ£©¡ß$f£¨x£©=m•n={cos^2}¦Øx-{sin^2}¦Øx+2\sqrt{3}cos¦Øxsin¦Øx$
=$cos2¦Øx+\sqrt{3}sin2¦Øx=2sin£¨{2¦Øx+\frac{¦Ð}{6}}£©$£¬
ÓÉf£¨x£©ÏàÁÚÁ½¶Ô³ÆÖá¼äµÄ¾àÀëµÈÓÚ$\frac{¦Ð}{2}$£¬µÃT=¦Ð£¬
¡à$T=\frac{2¦Ð}{2¦Ø}=¦Ð$£¬µÃ¦Ø=1£¬
¡à$f£¨x£©=2sin£¨{2x+\frac{¦Ð}{6}}£©$£®¡­£¨6·Ö£©
£¨¢ò£©¡ßÓÉ$f£¨{\frac{C}{2}+\frac{¦Ð}{6}}£©=2sin£¨{C+\frac{¦Ð}{3}+\frac{¦Ð}{6}}£©=2cosC=\frac{{2\sqrt{5}}}{3}$£¬
¡à$cosC=\frac{{\sqrt{5}}}{3}$£¬
¡à$sinC=\frac{2}{3}$£¬
ÓÖ¡ß$a=\sqrt{5}$£¬¡÷ABCµÄÃæ»ýΪ$2\sqrt{5}$£¬
¡à${S_{¡÷ABC}}=\frac{1}{2}absinC=\frac{1}{2}•\sqrt{5}•b•\frac{2}{3}=2\sqrt{5}$£¬
¡àÇóµÃb=6£¬
¡ßÓÉÓàÏÒ¶¨ÀíµÃc2=a2+b2-2abcosC=21£¬
¡à$c=\sqrt{21}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÈý½ÇºãµÈ±ä»»¹«Ê½£¬Æ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËãµÈ֪ʶ£¬¿¼²éÁËÓàÏÒ¶¨Àí¼°ÆäÔËÓõȣ¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èý½ÇÐÎABCÈý±ß³¤·Ö±ðΪn£¬n+1£¬n+2£¬n¡ÊN+£¬×î´ó½ÇCÊÇ×îС½ÇAµÄÁ½±¶£®
£¨1£©ÇócosA£¨ÓÃn±íʾ£©
£¨2£©ÇóÕýÕûÊýnµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼¯ºÏA={0£¬1£¬2}£¬A¡ÉB={0£¬1}£¬A¡ÈB={0£¬1£¬2£¬3}£¬ÔòB=£¨¡¡¡¡£©
A£®{3}B£®{0£¬1}C£®{1£¬2£¬3}D£®{0£¬1£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÆøÏóÒâÒåÉÏ´Ó´º¼¾½øÈëÏᄉıê־Ϊ£º¡°Á¬Ðø5ÌìµÄÈÕÆ½¾ùζȾù²»µÍÓÚ22¡æ£®¡±ÏÖÓмס¢ÒÒ¡¢±ûÈýµØÁ¬Ðø5ÌìµÄÈÕÆ½¾ùζȵļǼÊý¾Ý£¨¼Ç¼Êý¾Ý¶¼ÊÇÕýÕûÊý£¬µ¥Î»£º¡æ£©£º
¢Ù¼×µØ£º5¸öÊý¾ÝµÄÖÐλÊýΪ24£¬ÖÚÊýΪ22£»
¢ÚÒҵأº5¸öÊý¾ÝµÄÖÐλÊýΪ27£¬×ÜÌå¾ùֵΪ24£»
¢Û±ûµØ£º5¸öÊý¾ÝÖÐÓÐÒ»¸öÊý¾ÝÊÇ32£¬×ÜÌå¾ùֵΪ26£¬×ÜÌå·½²îΪ10.2£®
Ôò¿Ï¶¨½øÈëÏᄉĵØÇøÓÐ2¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÉèµãM£¨x£¬y£©ÊDz»µÈʽ×é$\left\{{\begin{array}{l}{-1¡Üx¡Ü1}\\{0¡Üy¡Ü2}\end{array}}\right.$Ëù±íʾµÄÆ½ÃæÇøÓò¦¸ÖÐÈÎÈ¡µÄÒ»µã£¬OÎª×ø±êÔ­µã£¬Ôò|OM|¡Ü2µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{¦Ð+3\sqrt{3}}}{12}$B£®$\frac{{2¦Ð+3\sqrt{3}}}{6}$C£®$\frac{{2¦Ð+\sqrt{3}}}{12}$D£®$\frac{{2¦Ð+3\sqrt{3}}}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô0£¼x£¼y£¼1£¬Ôò£¨¡¡¡¡£©
A£®3y£¼3xB£®logx3£¼logy3C£®log4x£¾log4yD£®£¨$\frac{1}{4}$£©x£¾£¨$\frac{1}{4}$£©y

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®m£¬n£¬l±íʾÈýÌõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦Ã±íʾÈý¸ö²»Í¬µÄÆ½Ãæ£¬ÏÂÁÐÃüÌâÖÐ
¢ÙÈôm£¬nÓël¶¼´¹Ö±£¬Ôòm¡În£»
¢ÚÈôm¡Î¦Á£¬m¡În£¬Ôòn¡Î¦Á£»
¢ÛÈôm¡Í¦Á£¬n¡Î¦ÂÇÒ¦Á¡Î¦Â£¬Ôòm¡Ín£»
¢ÜÈô¦Ã¡Í¦Á£¬¦Ã¡Í¦Â£¬Ôò¦Á¡Î¦Â
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ¢Û£®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èôº¯Êýy=f£¨x+1£©µÄ¶¨ÒåÓòÊÇ[-4£¬6]£¬Ôòf£¨x+2£©µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®[0£¬$\frac{5}{2}$]B£®[-1£¬4]C£®[-5£¬5]D£®[-3£¬7]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²CµÄ·½³ÌÊÇx2+y2-2x-4y=0£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÖ±ÏßlÓëÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÔ²CµÄÁ½¸ö½»µãΪM£¬N£¬ÇóM£¬NÁ½µãµÄ¼«×ø±ê£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©£¬ÒÔ¼°¡÷MONµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸